References
- Lorenzo AR, Lin CH, Lin CH, et al. Selection of the recipient vein in microvascular flap reconstruction of the lower extremity: analysis of 362 free-tissue transfers. J Plast Reconstr Aesthet Surg 2011;64:649-55. https://doi.org/10.1016/j.bjps.2010.07.028
- Nahabedian MY, Momen B, Manson PN. Factors associated with anastomotic failure after microvascular reconstruction of the breast. Plast Reconstr Surg 2004;114:74-82.
- Moran SL, Serletti JM. Outcome comparison between free and pedicled TRAM flap breast reconstruction in the obese patient. Plast Reconstr Surg 2001;108:1954-60. https://doi.org/10.1097/00006534-200112000-00017
- Loerakker S, Oomens CW, Manders E, et al. Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn Reson Med 2011;66:528-37. https://doi.org/10.1002/mrm.22801
- Dillon JP, Laing AJ, Cahill RA, et al. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle. J Orthop Res 2005;23:1454-9. https://doi.org/10.1016/j.orthres.2005.04.009.1100230631
- Zheng J, Wang R, Zambraski E, et al. Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol 2007;293:H3685-91. https://doi.org/10.1152/ajpheart.00819.2007
- Arato E, Kurthy M, Sinay L, et al. Effect of vitamin E on reperfusion injuries during reconstructive vascular operations on lower limbs. Clin Hemorheol Microcirc 2010;44:125-36.
- Tatlidede SH, Murphy AD, McCormack MC, et al. Improved survival of murine island skin flaps by prevention of reperfusion injury. Plast Reconstr Surg 2009;123:1431-9. https://doi.org/10.1097/PRS.0b013e3181a071e8
- Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-36. https://doi.org/10.1161/01.CIR.74.5.1124
- Koti RS, Seifalian AM, McBride AG, et al. The relationship of hepatic tissue oxygenation with nitric oxide metabolism in ischemic preconditioning of the liver. Faseb j 2002;16: 1654-6. https://doi.org/10.1096/fj.01-1034fje
- Dautel G, Braga da Silva J, Merle M. Pedicled or free flap transfer of the gracilis muscle in rats. J Reconstr Microsurg 1991;7:23-5. https://doi.org/10.1055/s-2007-1006760
- Kuntscher MV, Schirmbeck EU, Menke H, et al. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model. Plast Reconstr Surg 2002;109: 2398-404. https://doi.org/10.1097/00006534-200206000-00034
- Kuntscher MV, Kastell T, Sauerbier M, et al. Acute remote ischemic preconditioning on a rat cremasteric muscle flap model. Microsurgery 2002;22:221-6. https://doi.org/10.1002/micr.10041
- Addison PD, Neligan PC, Ashrafpour H, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol 2003;285:H1435-43. https://doi.org/10.1152/ajpheart.00106.2003
- Andreka G, Vertesaljai M, Szantho G, et al. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart 2007;93:749-52. https://doi.org/10.1136/hrt.2006.114504
- Schmidt MR, Smerup M, Konstantinov IE, et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 2007;292: H1883-90. https://doi.org/10.1152/ajpheart.00617.2006
- Kuntscher MV, Hartmann B, Germann G. Remote ischemic preconditioning of flaps: a review. Microsurgery 2005;25: 346-52. https://doi.org/10.1002/micr.20123
- Kuntscher MV, Kastell T, Engel H, et al. Late remote ischemic preconditioning in rat muscle and adipocutaneous flap models. Ann Plast Surg 2003;51:84-90. https://doi.org/10.1097/01.SAP.0000054186.10681.E2
- Labbe R, Lindsay T, Walker PM. The extent and distribution of skeletal muscle necrosis after graded periods of complete ischemia. J Vasc Surg 1987;6:152-7. https://doi.org/10.1067/mva.1987.avs0060152
- Mills SE. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.
- Kuntscher MV, Juran S, Altmann J, et al. Role of nitric oxide in the mechanism of preclamping and remote ischemic preconditioning of adipocutaneous flaps in a rat model. J Reconstr Microsurg 2003;19:55-60. https://doi.org/10.1055/s-2003-37192
- Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning II: the role of nitric oxide. Microsurgery 2002;22:227-31. https://doi.org/10.1002/micr.10042
- Peralta C, Closa D, Hotter G, et al. Liver ischemic preconditioning is mediated by the inhibitory action of nitric oxide on endothelin. Biochem Biophys Res Commun 1996;229: 264-70. https://doi.org/10.1006/bbrc.1996.1790
- Wang WZ, Anderson GL, Guo SZ, et al. Initiation of microvascular protection by nitric oxide in late preconditioning. J Reconstr Microsurg 2000;16:621-8. https://doi.org/10.1055/s-2000-9380
Cited by
- Transferring the protective effect of remote ischemic preconditioning on skin flap among rats by blood serum vol.53, pp.4, 2017, https://doi.org/10.1080/2000656x.2019.1582422
- Subclinical effects of remote ischaemic conditioning in human kidney transplants revealed by quantitative proteomics vol.17, pp.1, 2017, https://doi.org/10.1186/s12014-020-09301-x
- ZNF667 attenuates leukocyte‐endothelial adhesion via downregulation of P‐selectin in skin flap following remote limb ischemic preconditioning vol.45, pp.7, 2017, https://doi.org/10.1002/cbin.11586
- Deleterious Effects of Remote Ischaemic Per-conditioning During Lower Limb Ischaemia-Reperfusion in Mice vol.62, pp.6, 2017, https://doi.org/10.1016/j.ejvs.2021.06.032