DOI QR코드

DOI QR Code

Genome-wide analysis of heterosis-related genes in non-heading Chinese cabbage

  • Yi, Hankuil (Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University) ;
  • Lee, Jeongyeo (Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University) ;
  • Song, Hayong (Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University) ;
  • Dong, Xiangshu (School of Agriculture, Yunnan University) ;
  • Hur, Yoonkang (Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University)
  • Received : 2017.09.18
  • Accepted : 2017.09.21
  • Published : 2017.09.30

Abstract

Heterosis or hybrid vigor describes a phenomenon that superior phenotypes compared to the two parents are observed in the heterozygous $F_1$-hybrid plants. Identification and characterization of heterosis-related genes (HRGs) will facilitate hybrid breeding in crops. To identify HRGs in Brassica rapa, we analyzed transcriptome profiling using a Br300K microarray in non-heading Chinese cabbage at three developmental stages. A large number of genes were differentially expressed in $F_1$ hybrids and non-additive expression was prominent. Genes that are expressed specifically for $F_1$ hybrid at all three stages were Brassica-specific uncharacterized genes and several defense-related genes. Expression of several photosynthesis- and stress-related genes were also $F_1$ hybrid-specific. Thirteen NBS-LRR class genes showed high and specific expression in $F_1$ hybrid Shulu: some of them were characterized as defense genes in Arabidopsis, but most have not been. Further characterization of these defense-related genes in Brassica species and its application will be helpful for understanding the role of defense responses in heterosis. In addition, results obtained in this study will be valuable to develop molecular markers for heterosis and disease resistance in B. rapa.

Keywords

References

  1. Auger DL, Gray AD, Ream TS, Kato A, Coe EH Jr, Birchler JA (2005) Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169:389-397
  2. Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63:6309-6314 https://doi.org/10.1093/jxb/ers291
  3. Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120: 271-281 https://doi.org/10.1007/s00122-009-1133-z
  4. Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783-96 https://doi.org/10.1038/nrg2664
  5. Chen ZF (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471-482 https://doi.org/10.1038/nrg3503
  6. Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y (2013) Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 8: e72178 https://doi.org/10.1371/journal.pone.0072178
  7. Eitas TK, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA. 105:6475-6480 https://doi.org/10.1073/pnas.0802157105
  8. Fu D, Xiao M, Hayward A, Jiang G, Zhu L, Zhou Q, Li J, Zhang M (2015) What is crop heterosis: new insights into an old topic. J Appl Genetics 56:1-13 https://doi.org/10.1007/s13353-014-0231-z
  9. Greaves IK, Gonzalez-Bayon R, Wang L, Zhu A, Liu PC, Groszmann M, Peacock WJ, Dennis ES (2015) Epigenetic changes in hybrids. Plant Physiol 168:1197-1205 https://doi.org/10.1104/pp.15.00231
  10. Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis $F_1$ hybrids. Proc Natl Acad Sci USA 112:E6397-E6406
  11. Groszmann M, Greaves IK, Fujimoto R, Peacock WJ, Dennis ES (2013) The role of epigenetics in hybrid vigour. Trends Genet 29:684-690 https://doi.org/10.1016/j.tig.2013.07.004
  12. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831-845 https://doi.org/10.1007/s00122-006-0335-x
  13. Hatsugai N, Hillmer R, Yamaoka S, Hara-Nishimura I, Katagiri F (2016) The ${\mu}$ subunit of Arabidopsis adaptor protein-2 is involved in effector-triggered immunity mediated by membrane-localized resistance proteins. Mol Plant Microbe Interact 29:345-351 https://doi.org/10.1094/MPMI-10-15-0228-R
  14. Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427-432 https://doi.org/10.1016/j.tplants.2007.08.005
  15. Hou XL, Cao SC, Zhang SN, Zhang ZC, Wang JJ, Sun HX (2005) Selection of non-heading Chinese cabbage cultivar Shulu with high-quality. J Nanging Agr Univ 28:30-33
  16. Irizarry RA, Hobbs B, Collin F, Beazer-barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249264
  17. Jeong SY, Ahmed NU, Jung HJ, Kim HT, Park JI, Nou IS (2017) Discovery of candidate genes for heterosis breeding in Brassica oleracea L. Acta Physiol Plant 39:180 https://doi.org/10.1007/s11738-017-2474-x
  18. Kawanabe T, Ishikura S, Miyaji N, Sasaki T, Wu LM, Itabashi E, Takada S, Shimizu M, Takasaki-Yasuda T, Osabe K, Peacock WJ, Dennis ES, Fujimoto R. (2016) Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc Natl Acad Sci USA. 113: E6704-E6711 https://doi.org/10.1073/pnas.1613372113
  19. Kim GT, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267-1279 https://doi.org/10.1093/emboj/21.6.1267
  20. Ko DK, Rohozinski D, Song Q, Taylor SH, Juenger TE, Harmon FG, Chen ZJ (2016) Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybirds. PLoS Genet 12:e1006197 https://doi.org/10.1371/journal.pgen.1006197
  21. Kumar S, Kanakachari M, Gurusamy D, Kumar K, Narayanasamy P, Kethireddy Venkata P, Solanke A, Gamanagatti S, Hiremath V, Katageri IS, Leelavathi S, Kumar PA, Reddy VS (2016) Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defense mechanism. Plant Biotechnol J 14:1438-1455 https://doi.org/10.1111/pbi.12508
  22. Lewis JD, Wu R, Guttman DS, Desveaux D (2010) Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet 6:e1000894 https://doi.org/10.1371/journal.pgen.1000894
  23. Li A, Fang MD, SongWQ, Chen CB, Qi LW, Wang CG (2012) Gene expression profiles of two intraspecific Larix lines and their reciprocal hybrids. Mol Biol Rep 39:3773-3784 https://doi.org/10.1007/s11033-011-1154-y
  24. Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, Zhou M, Tian D, Tang M, Wu Q, Liu X, Chen T, Song X, Fu X, Zhao B, Liang C, Li A, Liu G, Li S, Hu S, Cao X, Yu J, Yuan L, Chen C, Zhu L (2016) Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci USA 113:E6026-E6035 https://doi.org/10.1073/pnas.1610115113
  25. Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60-66 https://doi.org/10.1016/j.tig.2006.12.006
  26. Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381-391 https://doi.org/10.1007/s11103-006-9095-x
  27. Miller M, Song Q, Shi X, Juenger TE, Chen ZJ (2015) Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat Commun 6:7453 https://doi.org/10.1038/ncomms8453
  28. Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327-331 https://doi.org/10.1038/nature07523
  29. Plotner B, Nurmi M, Fischer A, Watanabe M, Schneeberger K, Holm S, Vaid N, Schottler MA, Walther D, Hoefgen R, Weigel D, Laitinen RAE (2017) Chlorosis caused by two recessively interacting genes reveals a role of RNA helicase in hybrid breakdown in Arabidopsis thaliana. Plant J 91:251-262 https://doi.org/10.1111/tpj.13560
  30. Romagnoli S, Maddaloni M, Livini C, Motto M (1990) Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L) plantlets. Theor Appl Genet 80:767-775
  31. Saeki N, Kawanabe T, Ying H, Shimizu M, Kojima M, Abe H, Okazaki K, Kaji M, Taylor JM, Sakakibara H, Peacock WJ, Dennis ES, Fujimoto R (2016) Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol 16:45 https://doi.org/10.1186/s12870-016-0734-3
  32. Sarazin V, Duclercq J, Mendou B, Aubanelle L, Nicolas V, Aono M, Pilard S, Guerineau F, Sangwan-Norreel B, Sangwan RS (2015) Arabidopsis BNT1, an atypical TIR-NBS-LRR gene, acting as a regulator of the hormonal response to stress. Plant Sci 239:216-229 https://doi.org/10.1016/j.plantsci.2015.07.017
  33. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71-88 https://doi.org/10.1146/annurev-arplant-042110-103827
  34. Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24:875-892 https://doi.org/10.1105/tpc.111.094870
  35. Song H, Yi H, Do c, Han CT, Nou IS, Hur Y (2017) Genome-wide analysis of gene expression to distinguish photoperiod-dependent and -independent flowering in Brassicaceae. Genes Genom 39:207-223 https://doi.org/10.1007/s13258-016-0487-2
  36. Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the $F_1$ hybrid. Genetics 173:2199-2210 https://doi.org/10.1534/genetics.106.060699
  37. Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33 https://doi.org/10.1186/1471-2229-8-33
  38. Tsaftaris AS (1995) Molecular aspects of heterosis in plants. Physiol Plant 94:362-370 https://doi.org/10.1111/j.1399-3054.1995.tb05324.x
  39. Wang L, Wu LM, Greaves IK, Zhu A, Dennis ES, Peacock WJ (2017) PIF4-controlled auxin pathway contributes to hybrid vigor in Arabidopsis thaliana. Proc Natl Acad Sci USA 114:E3555-E3562 https://doi.org/10.1073/pnas.1703179114
  40. Wang T, Sui Z, Liu X, Li Y, Li H, Xing J, Song F, Zhang Y, Sun Q, Ni Z (2016) Ectopic expression of a maize hybrid up-regulated gene, ErbB-3 binding Protein 1 (ZmEBP1), increases organ size by promoting cell proliferation in Arabidopsis. Plant Sci 243:23-34 https://doi.org/10.1016/j.plantsci.2015.11.002
  41. Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:research0048
  42. Yang Y, Wu X, Xuan H, Gao Z (2016) Functional analysis of plant NB-LRR gene L3 by using E. coli. Biochem Biophys Res Commun 478:1569-1574 https://doi.org/10.1016/j.bbrc.2016.08.154
  43. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193-205 https://doi.org/10.1016/j.cell.2013.02.033