DOI QR코드

DOI QR Code

Modern pollen morphological taxonomic characteristics of climate-sensitive species in Korean Peninsula

한반도 기후민감성 상록활엽수 지시종 현생화분의 형태분류학적 특성

  • Lee, Eunmi (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yi, Sangheon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jo, Kyoung-nam (Department of Geology, Kangwon National University) ;
  • Kim, Yongmi (Dept. of Petroleum Resources Technology, Korea University of Science and Technology)
  • 이은미 (한국지질자원연구원 지질환경연구본부) ;
  • 이상헌 (한국지질자원연구원 지질환경연구본부) ;
  • 조경남 (강원대학교 지질학과) ;
  • 김용미 (과학기술연합대학원대학교 석유자원공학과)
  • Received : 2017.10.16
  • Accepted : 2017.11.17
  • Published : 2017.12.31

Abstract

An identification of species level in Quaternary pollen analysis is strongly requested to reconstruct more reliable vegetation history. The precise morphological analysis of the modern pollen plays an important role to taxonomically identify the fossil pollen grains. We here have built the database of detailed pollen morphological taxonomic characteristics of climate-sensitive species such as Camellia japonica Linne and Castanopsis cuspidata var. sieboldii Nakai from the mother plants in the southern part of the Korean Peninsula. We quantitatively analyzed all diagnostic features including shape, size, ornamentation, wall thickness, aperture and so on by Light Microscope (LM) and Scanning Electron Microscope (SEM) observation. 25 pollen grains of each 2 species were morphologically analyzed in the equatorial view. Especially pollen size of Camellia japonica Linne and Castanopsis cuspidata var. sieboldii Nakai in this study area are a larger and a wider size range than that of these taxa from the neighbor countries. In the future, it will be necessary to carry out the morphological comparative analysis of additional modern pollen in different areas of South Korea under the same experimental procedure to figure out whether pollen morphological features are affected by geographical or environmental factors even in the homogeneous species. The results can help to improve an accuracy of palynomorph analysis enabling the species-level identification. Therefore, more reliable reconstruction of paleo-vegetation change and climate history based on species-level palynomorph analysis could be conducted from the Holocene sediments of the southern part of South Korea.

본 연구에서는 한반도 기후민감성 상록활엽수 지시종인 동백나무(Camellia japonica Linne)와 구실잣밤나무(Castanopsis cuspidata var. sieboldii Nakai)에 대한 현생화분의 주요 형태분류학적 특징을 데이터베이스화 하였다. 현생화분의 형태학적 연구는 화석화분 감정(identification)의 중요한 핵심요소(criteria)로 활용되며 화석지표종과의 비교 검증을 통해 보다 정확하고 정밀한 감정을 가능하게 한다. 이를 위해 채집된 2종의 현생화분은 글리세린 젤리 봉합제를 사용하여 광학현미경 분석이 수행되었으며(동백나무: 25 개체, 구실잣밤나무: 25 개체), 주로 적도면도(equatorial-oblique view)를 기준으로 ${\times}1,000$배율에서 화분의 형태(shape, P/E ratio), 크기(size), 표면무늬(ornamentation), 외벽두께(wall thickness), 외벽구조(exine structure), 화분관구(apertures) 등을 측정하였다. 본 연구의 자료와 다른 주변국들의 자료를 비교분석한 결과, 동종일지라도 화분의 크기 및 표면무늬 등은 각 지역마다 다소 상이하게 나타나며, 특히 한반도 남한지역에서 채집한 동백나무와 구실잣밤나무의 화분은 크기면에서 다른 주변국에 비해 크고 넓은 분포범위를 가진다. 따라서 화분의 형태적 특징이 지리적 또는 환경적 요인에 영향을 받는지를 확인할 필요가 있다. 향후 동일한 실험절차에 따라 연구 대상범위를 확대하여 국내 다른 지역에서 추가적인 현생화분의 형태학적인 비교분석을 수행 할 예정이다. 이러한 분석기반 자료는 향후 한반도 남해안 지역의 홀로세 동안 고식생 및 고환경 복원연구에 유용하게 활용될 것으로 생각된다.

Keywords

Acknowledgement

Grant : 지질 기록체를 활용한 한반도 아열대화 규명 연구: 중기 홀로세 기후-특성 평가

Supported by : 한국지질자원연구원, 한국연구재단

References

  1. Brooks, J. and Shaw, G., 1978, Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry. Grana, 17(2), 91-97, doi: 10.1080/00173137809428858.
  2. Chang, N.K., 1986, Illustrated Flora and Fauna of Korea, vol. 29 POLLENS. Ministry of Education, 899 p (in Korean with English abstract).
  3. Chang, N.K. and Rim, Y.D., 1979, Morphological studies on the pollen flowering plants in Korea. Seoul National University Press, 62 p + 137 pl (in Korean with English abstract).
  4. Choi, B.-K., 2012, Syntaxonomy and Syngeography of Warm-Temperate Evergreen Broad-leaved Forests in Korea. Ph.D. thesis, Keimyung University, Daegu, 148 p (in Korean with English abstract).
  5. Chung, J.-M., Jung, H.-R. and Moon, H.-S., 2011, Spreading Pattern of Evergreen Broad-leaved Trees in Forest Community adjacent to the Camellia japonica Stands. Journal of Agriculture & Life Science, 45(6), 89-94 (in Korean with English abstract).
  6. Cultural Heritage Administration, 1962a, http://wwwcha.go.kr/korea/heritage/search/Culresult_Db_View.jsp?mc=NS_04_03_01&VdkVgwKey=16,01120000,36 (October 11, 2017).
  7. Cultural Heritage Administration, 1962b, http://www.cha.go.kr/korea/heritage/search/Culresult_Db_View.jsp?mc=NS_04_03_01&VdkVgwKey=16,01230000,35 (October 11, 2017).
  8. Cultural Heritage Administration, 1962c, http://search.cha.go.kr/srch_new/search/search_top.jsp?searchCnd=&searchWrd=&home=total&mn=&gubun=search&query=%EB%B6%89%EA%B0%80%EC%8B%9C%EB%82%98%EB%AC%B4&x=16&y=11 (October 11, 2017).
  9. Erdtman, G., 1952, Pollen Morphology and Plant Taxonomy. Angiosperms. Almqvist and Wiksell, Stockholm. 539 p.
  10. Faegri, K., 1956, Recent trends in palynology. The Botanical Review, 22, 639-664. https://doi.org/10.1007/BF02872374
  11. Fujiki, T. and Ozawa, T., 2007, The Pollen Flora of Ryukyu, Japan. Aqua Coral Planning, 155 p.
  12. Huang, T.-C., 1972, Pollen Flora of Taiwan. National Taiwan University Press, 276 p + 177 pls.
  13. Kira, T., 1945, A New Classification of Climate in Eastern Asia as the Basis of Agricultural Geography. Horticultural Institute, Kyoto University, 23 p (in Japanese).
  14. Kira, T., 1948, On the altitudinal arrangement of climatic zones in Japan. Kanti-Nogaku, 2, 143-173 (in Japanese).
  15. Koo, K.-A., Kong, W.-S. and Kim, C.-K., 2001, Distribution of evergreen broad-leaved plants and climatic factors. Journal of the Korean Geographical Society, 36(3), 247-257 (in Korean with English abstract).
  16. Korea Forest Research Institute, 2014, Resource characteristics and evaluation of major plants in southern part of the Korea. Research Report of Korea Forest Research Institute, 574, 104 p (in Korean).
  17. Kremp, O.W., 1965, Morphologic Encyclopedia of Palynology. University of Arizona Press, Tucson, 263 p.
  18. Kuyl, O.S., Muller, J. and Waterbolk, H.T., 1955, The application of palynology to oil geology with reference to Western Venezuela. Geologie en Mijnbouw, New Series, 17, 49-75.
  19. Kwon, Y.S., 2004, A Study on the Castanopsis cuspidata var. sieboldii NAKAI forest community structure. Master thesis, Chonnam National University, Gwangju, 40 p (unpublished) (in Korean with English abstract).
  20. Lee, J.-H. and Choi, B.-H., 2010, Distribution and Northernmost Limit on the Korean Peninsula of Three Evergreen Trees. Korean Journal of Plant Taxonomy, 40(4), 267-273 (in Korean with English abstract). https://doi.org/10.11110/kjpt.2010.40.4.267
  21. Lee, J.S., Lee, K.-H. and O.C., 2010, New Woody Plant Flora of Korea. Research Information Center, 519 p (I) + 539 p (II) (in Korean).
  22. Meltsov, V., Poska, A. and Saar, M., 2008, Pollen size in Carex: The effect of different chemical treatments and mounting media. Grana, 47(3), 220-233, doi: 10.1080/00173130802435970.
  23. Miyoshi, N., 1983, Pollen morphology of the genus Castanopsis (Fagaceae) in Japan. Grana, 22(1), 19-21, doi: 10.1080/00173138309429909.
  24. Moore, P.D., Webb, J.A. and Collinson, M., 1991, Pollen Analysis. Blackwell, London. 216 p.
  25. National Institute of Biological Resources (NIBR), 2008, Biological Resources Data. Gyoungseong Publisher, Seoul, 227 p (in Korean).
  26. National Institute of Biological Resources (NIBR), 2010, Selection criteria of CBIS (Climate-sensitive Biological Indicator Species) in Korea. Ministry of environment, South Korea, 11 p (in Korean).
  27. National Institute of Biological Resources (NIBR), 2017a, https://species.nibr.go.kr/home/mainHome.do?cont_link=009&subMenu=009002&contCd=009002&ktsn=120000060561 (October 10, 2017).
  28. National Institute of Biological Resources (NIBR), 2017b, https://species.nibr.go.kr/home/mainHome.do?cont_link=009&subMenu=009002&contCd=009002&ktsn=120000060937 (October 10, 2017).
  29. Ohashi, H., Sasaki, Y. and Ohashi, K., 2006a, The northernmost limit of distribution of Quercus acuta Thunb. (Fagaceae). Journal of Japanese Botany, 81, 173-187 (in japanese).
  30. Ohashi, H., Sasaki, Y. and Ohashi, K., 2006b, The northernmost limit of distribution of Neolitsea sericea (Blume) Koidz. (Lauraceae) on the pacific side of Japan. Journal of Japanese Botany, 81, 248-249 (in japanese).
  31. Park, S., 2016, Distribution of warm temperate evergreen broad-leaved trees change due to climate change. Master thesis, Kyung Hee University, Seoul, 160 p (unpublished) (in Korean with English abstract).
  32. Park, H.Y., Sun, B.Y., Kim, T.J. and Oh, H.W., 2010, Pollen of Korea I Korea Research Institute of Bioscience and Biotechnology (KRIBB), KOREA. 307 p (in Korean).
  33. Shimakura, M., 1973, Palynomorphs of Japanese plants. Special Publications from the Osaka museum of natural history, vol. 5, 60 p (in Japanese with English summary).
  34. Song, Y.C., 1988, Broad-leaved evergreen forests in Central Japan in comparison with Eastern China. Geobotanik Institute, ETH, Stiftung Rubel, Zurich, 98, 197-224.
  35. Tatsuo, K., 1976, Land Ecosystem: Introduction (Lecture of Ecology 2), Kyoritsu Shuppan, Tokyo, 166 p.
  36. Traverse, A., 1988, Paleopalynology. Unwin Hyman, Boston, 600 p.
  37. Wang, C.W., 1961, The Forests of China with a Survey of Grassland and Desert Vegetation. Beijing, Maria Moors Cabot Foundation and Harvard University, 313 p.
  38. Yang, K.-C. and Shim, J.-K., 2007, Distribution of Major Plant Communities Based on the Climatic Conditions and Topographic Features in South Korea. Korean Journal of Environmental Biology, 25(2), 168-177 (in Korean with English abstract).
  39. Yim, K.B., 1968, Jorimhak Wonron (Principles of Silviculture). Hyangmunsa, Seoul, 492 p (in Korean).
  40. Yim, Y.J., 1977a, Distribution of forest vegetation and climate in the Korean Peninsula. III. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology, 27, 177-189.
  41. Yim, Y.J., 1977b, Distribution of forest vegetation and climate in the Korean Peninsula. IV. Zonal distribution of forest vegetation in relation to thermal climate. Japanese Journal of Ecology, 27, 269-278.
  42. Yim, Y.J. and Kira, T., 1975, Distribution of forest vegetation and climate in the Korean Peninsula. I. Distribution of some indices of thermal climate. Japanese Journal of Ecology, 25, 77-88.
  43. Yun, J.-H., Nakao, K., Park, C.-H., Lee, B.-Y. and O, K.-H., 2011, Change Prediction for Potential Habitats of Warmtemperate Evergreen Broad-leaved Trees in Korea by Climate Change. Korean Journal of Environment and Ecology, 25(4), 590-600 (in Korean with English abstract).
  44. Zavada, M.S. and Wei, Z.-X., 1993, A Contribution to the Pollen Morphology of Camellia (Theaceae). Grana, 32 (4-5), 233-242, doi: 10.1080/00173139309429986.

Cited by

  1. 장족형 탄화수소(n-alkane)의 탄소 안정동위원소비를 통한 과거 3만년 동안 한반도 남동해안의 고식생 및 고기후 복원 vol.40, pp.4, 2018, https://doi.org/10.4217/opr.2018.40.4.289
  2. An introduction of modern pollen analogue methods for reconstruction of paleovegetation and pollen-based quantitative paleotemperature vol.56, pp.1, 2017, https://doi.org/10.14770/jgsk.2020.56.1.85