DOI QR코드

DOI QR Code

Hydrogeochemical modeling on water-rock-CO2 interactions within a CO2-injected shallow aquifer

천부대수층 내 이산화탄소 주입에 의한 물-암석-CO2 반응에 대한 수리지구화학적 모델링

  • Lee, Seol Hee (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science (RINS), Gyeongsang National University) ;
  • Choi, Byoung-Young (Center for CO2 Geological Storage, Korea Institute of Geoscience and Mineral Resources) ;
  • Do, Hyun-Kwon (Department of Earth and Environmental Sciences and K-COSEM Research Center) ;
  • Yun, Seong-Taek (Department of Earth and Environmental Sciences and K-COSEM Research Center) ;
  • Jun, Seong-Chun (GeoGreen21 Co. Ltd.)
  • 이설희 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최병영 (한국지질자원연구원 CO2 지중 저장 연구단) ;
  • 도현권 (고려대학교 지구환경과학과 및 K-COSEM 연구단) ;
  • 윤성택 (고려대학교 지구환경과학과 및 K-COSEM 연구단) ;
  • 전성천 ((주)지오그린21)
  • Received : 2017.08.09
  • Accepted : 2017.09.11
  • Published : 2017.10.13

Abstract

Multi-dimensional and multi-phase hydrogeochemical reactive transport modeling was conducted to predict the dispersion of $CO_2$ plume after its injection into a shallow aquifer via a controlled release test within the environmental impact evaluation test facility on seepage of geologically stored $CO_2$ (EIT) site. In addition, the model simulations aimed at observing the change of mineralogical composition occurring as a result of water-rock-$CO_2$ interactions. Contrary to the expectation that the injected $CO_2$ dispersed in the direction of groundwater flow, the model simulations showed that the $CO_2$ plume was isotopically dispersed initially and then transported preferentially towards the northeastern direction of the injection well. This result can be related to the zone of a relatively higher electrical resistivity (ER) where the injection well existed and the northeastern zone where a relatively lower ER was distributed. The results of model simulations on the change of volume factions of major minerals via water-rock-$CO_2$ interactions for the period of 1,000 years after the $CO_2$ injection indicate that naturally-occurring K-feldspar, albite, anorthite, chlorite, kaolinite, and glauconite seemed to be continuously dissolved as a result of decreasing pH, whereas quartz and illite were observed to be predominantly precipitated. Furthermore, it is likely that the mineral trapping of the injected $CO_2$ was mostly contributed to calcite and dolomite. However, the volume fraction of magnesite seemed not to be changed, and which indicates that it was not precipitated under the given conditions of temperature and pressure. It is expected that these results of model simulations can be applied as one of indicators to quantitatively evaluate the long-term efficiency of mineral trapping of injected $CO_2$.

인위누출시험에 의하여 천부대수층으로 주입된 이산화탄소 플룸의 확산을 예측하고 장기간의 물-암석-이산화탄소 반응에 의한 광물학적 조성변화를 고찰하기 위하여 다차원-다상 수리지구화학적 반응성 이동 모델링을 수행하였다. 주입된 이산화탄소는 지하수의 흐름방향으로 확산될 것이라는 예상과 달리 모델 시뮬레이션 결과, 이산화탄소 주입수의 플룸은 초기에 등방성을 가지며 확산되나 이후 주입정으로부터 북동쪽으로 우선적으로 확산되는 것으로 나타났다. 이러한 결과는 주입관정이 위치한 구역 하부에서 나타나는 상대적으로 높은 전기비저항값과 주입관정을 중심으로 북동쪽으로 위치하는 상대적으로 낮은 전기비저항값의 분포와 연관이 있다고 판단하였다. 또한 이산화탄소 주입에 따른 물-암석-이산화탄소 반응으로 나타나는 광물조성의 체적 분율 변화를 1,000년 동안 관찰한 결과, 대상 지층 내 자연적으로 존재하는 정장석, 조장석, 회장석, 녹니석, 카올리나이트 및 해록석은 낮아진 pH 조건하에 용해반응이 지속적으로 일어나며 석영과 일라이트는 침전반응이 우세하게 일어남을 볼 수 있었다. 그리고 이산화탄소의 탄산염광물로의 포획기작은 대부분 방해석과 백운석을 통해 발생하는 것으로 판단되며 마그네사이트는 체적 분율의 변화가 없는 것으로 보아 주어진 온도 및 압력 조건하에서는 침전되지 않는 것으로 판단되었다. 이러한 수치 모델링의 결과들은 장기간 이산화탄소 지중 저장에 있어 광물포획의 효율성을 정량적으로 평가하는 지표로써 활용될 수 있을 것이라 기대된다.

Keywords

Acknowledgement

Supported by : 한국환경산업기술원, 한국지질자원연구원

References

  1. Choi, B.Y., Chae, G.T., Kim, K.H., Koh, Y.K. and Yun, S.T., 2009, Application of conceptual reactive transport modeling to geologic $CO_2$ sequestration. Journal of the Geological Society of Korea, 45(1), 55-67 (in Korean with English abstract).
  2. Choi, B.Y., Park, Y.C., Shinn, Y.J., Kim, K.Y., Chae, G.T. and Kim, J.C., 2015a, Preliminary results of numerical simulation in a small-scale $CO_2$ injection pilot site: 1. Prediction of $CO_2$ plume migration. Journal of the Geological Society of Korea, 51(5), 487-496 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.487
  3. Choi, B.Y., Shinn, Y.J., Park, Y.C. and Park, J.Y., 2015b, Preliminary results of numerical simulation in a small-scale $CO_2$ injection pilot site: 2. Effect of $SO_2$ impurity on $CO_2$ storage. Journal of the Geological Society of Korea, 51(5), 497-509 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.497
  4. Choi, B.Y., Shinn, Y.J., Park, Y.C., Park, J.Y., Kwon, Y.K. and Kim, K.Y., 2017, Simulation of $CO_2$ injection in a small-scale pilot site in the Pohang Basin, Korea: Effect of dissolution rate of chlorite on mineral trapping. International Journal of Greenhouse Gas Control, 59, 1-12. https://doi.org/10.1016/j.ijggc.2017.02.001
  5. Choi, B.Y., Yun, S.T., Kim, K.H., Choi, H.S., Chae, G.T. and Lee, P.K., 2014, Geochemical modeling of $CO_2$-water-rock interactions for two different hydrochemical types of $CO_2$-rich springs in Kangwon District, Korea. Journal of Geochemical Exploration, 144, 49-62. https://doi.org/10.1016/j.gexplo.2014.02.009
  6. Choi, H.S., Koh, Y.K., Kim, C.S., Bae, D.S. and Yun, S.T., 2000, Environmental isotope characteristics of $CO_2$-rich water in the Kangwon province. Economic and Environmental geology, 33(6), 491-504 (in Korean with English abstract).
  7. Choi, H.S., Koh, Y.K., Yun, S.T. and Kim, C.S., 2002, Geochemical study on the mobility of dissolved elements by rock-$CO_2$-rich waters interaction in the Kangwon province. Economic and Environmental geology, 35(6), 533-544 (in Korean with English abstract).
  8. Class, H., Edigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Naderi, B.A., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L. and Wei, L., 2009, A Benchmark study on problems related to $CO_2$ storage in geologic formations: Summary and discussion of the results. Computational Geosciences, 13(4), 409-434. https://doi.org/10.1007/s10596-009-9146-x
  9. Holloway, S., 1997, An overview of the underground disposal of carbon dioxide. Energy Conversion and Management, 38, 193-198. https://doi.org/10.1016/S0196-8904(96)00268-3
  10. IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Pannel on Climate Change [Metz, B., O. Davison, H.C. de Coninck, M. Loos, and L.A. Meyer (eds.)]. Cambridge University Press, Cambride, United Kingdom and New York, NY, USA, 195-276.
  11. Jeong, C.H., 2004, Hydrochemistry and formation environment of $CO_2$-rich springs from the Kangwon province. Journal of the Mineralogical Society of Korea, 17(1), 61-73 (in Korean with English abstract).
  12. Jeong, C.H., Yoo, S.W., Kim, K.H. and Nagao, K., 2011, Hydrochemistry and origin of noble gases and $CO_2$ gas within carbonated mineral waters in the Kyeoungbuk-Kangwon province, Korea. The Journal of Engineering Geology, 21(1), 65-77 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.1.065
  13. Jun, S.C., Cheon, J.Y., Yi, J.H. and Yun, S.T., 2017, Controlled release test facility to develop environmental monitoring techniques for geologically stored $CO_2$ in Korea. Energy Procedia, 114, 3040-3051. https://doi.org/10.1016/j.egypro.2017.03.1432
  14. Kihm, J.H., Kim, J.M. and Wang, S.K., 2009, Numerical simulation of impacts of mineralogical compositions on efficiency and safety of geologic storage of carbon dioxide in deep sandstone aquifers. Journal of the Geological Society of Korea, 45(5), 493-516 (in Korean with English abstract).
  15. Koh, Y.K., Kim, C.S., Choi, H.S., Park, M.E. and Bae, D.S., 2000, Geochemical studies of $CO_2$-rich mineral water in the Kangwon province. Journal of the Geological Society of Korea, 7(2), 73-88 (in Korean with English abstract).
  16. Lasaga, A.C., 1995, Fundamental approaches in describing mineral dissolution and precipitation rates. Reviews in Mineralogy and Geochemistry, 31, 23-86.
  17. Lassen, R.N., Plampin, M., Sakaki, T., Illangasekare, T., Gudbjerg, J., Sonnenborg, T. and Jensen, K.H., 2015, Effects of geologic heterogeneity on migration of gaseous $CO_2$ using laboratory and modeling investigations. International Journal of Greenhouse Gas Control, 43, 213-224. https://doi.org/10.1016/j.ijggc.2015.10.015
  18. Lee, S.H., Kim, J.M. and Kihm, J.H., 2015, Evaluation of impacts of grid refinement on numerical modeling of behavior and trapping mechanisms of carbon dioxide injected into deep storage formations. Journal of the Geological Society of Korea, 51(2), 191-202 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.2.191
  19. Liu, F., Lu, P., Zhu, C. and Xiao, Y., 2011, Coupled reactive flow and transport modeling of $CO_2$ sequestration in the Mt. Simon sandstone formation, Midwest USA. International Journal of Greenhouse Gas Control, 5, 294-307. https://doi.org/10.1016/j.ijggc.2010.08.008
  20. Palandri, J.L. and Kharaka, Y.K., 2004, A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey. Open File Report 2004-1068.
  21. Parkhurst, D.L. and Appelo, C., 1999, User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigation Report 99-4259.
  22. Pruess, K., Oldenburg, C. and Moridis, G., 1999, TOUGH2 User's Guide, Version 2. LBNL-43134, Lawrence Berkeley National Laboratory, CA.
  23. Pruess, K. and Spycher, N., 2007, ECO2N-A fluid property module for the TOUGH2 code for studies of $CO_2$ storage in saline aquifers. Energy Conversion and Management, 48, 1761-1767. https://doi.org/10.1016/j.enconman.2007.01.016
  24. Qafoku, N.P., Lawter, A.R., Shao, H., Wang, G. and Brown, C.F., 2014, Evaluating impacts of $CO_2$ gas intrusion into a confined sandstone aquifer: experimental Results. Energy Procedia, 63, 3275-3284. https://doi.org/10.1016/j.egypro.2014.11.355
  25. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G., 2005, Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83, 173-193. https://doi.org/10.1016/j.still.2004.10.004
  26. Soulis, E., Snelgrove, K., Kouwen, N., Seglenieks, F. and Verseghy, D., 2000, Towards closing the vertical water balance in Canadian atmospheric models: coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmosphere-Ocean, 38, 251-269. https://doi.org/10.1080/07055900.2000.9649648
  27. Tian, H., Xu, T., Li, Y., Yang, Z. and Wang, F., 2015, Evolution of sealing efficiency for $CO_2$ geological storage due to mineral alteration within a hydrogeologically heterogeneous caprock. Applied Geochemistry, 63, 380-397. https://doi.org/10.1016/j.apgeochem.2015.10.002
  28. Wan, Y., Du, S., Lin, G., Zhang, F. and Xu, T., 2017, Experimental and numerical simulation study of the mineral sequestration mechanism of the Shiqianfeng saline aquifers in the Ordos Basin, Northwest China. Environmental Earth Sciences, 76, 43. https://doi.org/10.1007/s12665-016-6371-1
  29. Wolery, T.J. and Daveler, S.A., 1992, EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user's guide and related documentation (Version 7.0). Lawrence Livermore Laboratory, University of California Livermore, CA.
  30. Xu, T., John, A.A. and Pruess, K., 2004a, Numerical simulation of $CO_2$ disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19, 917-936. https://doi.org/10.1016/j.apgeochem.2003.11.003
  31. Xu, T., Sonnenthal, E., Spycher, N. and Pruess, K., 2004b, TOUGHREACT User's Guide: A simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media. Earth Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720.
  32. Xu, T., Sonnenthal, E., Spycher, N. and Pruess, K., 2006, TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and $CO_2$ geological sequestration. Computers & Geosciences, 36, 145-165.
  33. Xu, T., Yue, G., Wang, F. and Liu, N., 2014, Using natural $CO_2$ reservoir to constrain geochemical models for $CO_2$ geological sequestration. Applied Geochemistry, 43, 22-34. https://doi.org/10.1016/j.apgeochem.2014.01.009
  34. Yang, Q., Matter, J., Takahashi, T., Stute, M., O'Mullan, G., Clauson, K., Umemoto, K. and Goldberg, D., 2015, Groundwater geochemistry in bench experiments simulating $CO_2$ leakage from geological storage in the Newark Basin. International Journal of Greenhouse Gas Control, 42, 98-108. https://doi.org/10.1016/j.ijggc.2015.06.024
  35. Yi, M., Kim, J., Song, Y. and Chung, S., 2000, Dam seepage investigation using two-and three-dimensional resistivity surveys. Proceedings of the 2nd special symposium, KSEG.
  36. Yun, J.A. and Kim, K.H., 2000, Geochemistry and stable isotopes of carbonated waters in south Korea. Journal of the Korean Society of Groundwater Environment, 7(3), 116-124 (in Korean with English abstract).

Cited by

  1. Application of natural and artificial tracers to constrain CO2 leakage and degassing in the K-COSEM site, South Korea vol.86, pp.None, 2019, https://doi.org/10.1016/j.ijggc.2019.05.002
  2. 포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링 vol.54, pp.1, 2017, https://doi.org/10.9719/eeg.2021.54.1.69