DOI QR코드

DOI QR Code

Genetic Contributions to Childhood Obesity: Association of Candidate Gene Polymorphisms and Overweight/Obesity in Korean Preschool Children

  • Yoo, Kee Hwan (Department of Pediatrics, Korea University Ansan Hospital) ;
  • Yim, Hyung Eun (Department of Pediatrics, Korea University Ansan Hospital) ;
  • Bae, Eun Soo (Department of Pediatrics, Korea University Ansan Hospital) ;
  • Hong, Young Sook (Department of Pediatrics, Korea University Ansan Hospital)
  • Received : 2017.06.13
  • Accepted : 2017.09.03
  • Published : 2017.12.10

Abstract

This study was aimed to investigate the association of candidate gene polymorphisms and obesity or overweight in young Korean children. A total of 190 Korean preschool children (96 control, 48 overweight, and 46 obese children) were genotyped for the angiotensin converting enzyme (ACE) insertion (I)/deletion (D), angiotensin II type 2 receptor (AT2) C3123A, transforming growth factor $(TGF)-{\beta}1$ T869C, vascular endothelial growth factor (VEGF) T460C, and tumor necrosis factor $(TNF)-{\alpha}$ G308A polymorphisms. No differences were found among the groups with respect to age, sex, birth weight, blood pressure levels, and serum concentrations of glucose and total cholesterol. Obese children showed a higher incidence of ACE DD genotype and D allelic frequency compared to the controls (odds ratio [OR], 2.7, 95% confidence interval [CI], 1.01-7.21; OR, 2.5, 95% CI, 1.49-4.19; all P < 0.05). The frequency of TC genotype and C allele in the $TGF-{\beta}1$ T869C polymorphism (OR, 2.08, 95% CI, 1.01-4.27; OR, 1.93, 95% CI, 1.15-3.21) and that in the VEGF T460C polymorphism (OR, 2.5, 95% CI, 1.19-5.28; OR, 2.15, 95% CI, 1.26-3.68) was also higher in obese children than in control subjects (all P < 0.05). Overweight children exhibited a higher frequency of the A allele in the AT2 C3123A polymorphism compared to the controls (OR, 1.72, 95% CI, 1.03-2.88, P < 0.05). There were no differences in the $TNF-{\alpha}$ G308A polymorphism among the groups. The ACE I/D, AT2 C3123A, $TGF-{\beta}1$ T869C, and VEGF T460C polymorphisms can affect susceptibility to obesity or overweight in Korean children.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Lakshman R, Elks CE, Ong KK. Childhood obesity. Circulation 2012; 126: 1770-9. https://doi.org/10.1161/CIRCULATIONAHA.111.047738
  2. Dean HJ, Sellers EA. Comorbidities and microvascular complications of type 2 diabetes in children and adolescents. Pediatr Diabetes 2007; 8 Suppl 9: 35-41. https://doi.org/10.1111/j.1399-5448.2007.00340.x
  3. Hamada T, Kotani K, Nagai N, Tsuzaki K, Sano Y, Matsuoka Y, Fujibayashi M, Kiyohara N, Tanaka S, Yoshimura M, et al. Genetic polymorphisms of the renin-angiotensin system and obesity-related metabolic changes in response to low-energy diets in obese women. Nutrition 2011; 27: 34-9. https://doi.org/10.1016/j.nut.2009.10.012
  4. Wang HJ, Hinney A, Song JY, Scherag A, Meng XR, Grallert H, Illig T, Hebebrand J, Wang Y, Ma J. Association of common variants identified by recent genome-wide association studies with obesity in Chinese children: a case-control study. BMC Med Genet 2016; 17: 7. https://doi.org/10.1186/s12881-016-0268-4
  5. Mathai ML, Chen N, Cornall L, Weisinger RS. The role of angiotensin in obesity and metabolic disease. Endocr Metab Immune Disord Drug Targets 2011; 11: 198-205. https://doi.org/10.2174/187153011796429853
  6. Faloia E, Gatti C, Camilloni MA, Mariniello B, Sardu C, Garrapa GG, Mantero F, Giacchetti G. Comparison of circulating and local adipose tissue renin-angiotensin system in normotensive and hypertensive obese subjects. J Endocrinol Invest 2002; 25: 309-14. https://doi.org/10.1007/BF03344010
  7. Hadjadj S, Belloum R, Bouhanick B, Gallois Y, Guilloteau G, Chatellier G, Alhenc-Gelas F, Marre M. Prognostic value of angiotensin-I converting enzyme I/D polymorphism for nephropathy in type 1 diabetes mellitus: a prospective study. J Am Soc Nephrol 2001; 12: 541-9.
  8. Strazzullo P, Iacone R, Iacoviello L, Russo O, Barba G, Russo P, D'Orazio A, Barbato A, Cappuccio FP, Farinaro E, et al. Genetic variation in the renin-angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study. Ann Intern Med 2003; 138: 17-23. https://doi.org/10.7326/0003-4819-138-1-200301070-00007
  9. Aoki S, Mukae S, Itoh S, Sato R, Nishio K, Iwata T, Katagiri T. The genetic factor in acute myocardial infarction with hypertension. Jpn Circ J 2001; 65: 621-6. https://doi.org/10.1253/jcj.65.621
  10. Kotani K, Sakane N, Taniguchi N. Association between angiotensin II Type 2 receptor gene A/C3123 polymorphism and high-density lipoprotein cholesterol with hypertension in asymptomatic women. Med Princ Pract 2013; 22: 65-9. https://doi.org/10.1159/000339892
  11. Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007; 117: 2362-8. https://doi.org/10.1172/JCI32239
  12. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor-beta in human disease. N Engl J Med 2000; 342: 1350-8. https://doi.org/10.1056/NEJM200005043421807
  13. Tsurutani Y, Fujimoto M, Takemoto M, Irisuna H, Koshizaka M, Onishi S, Ishikawa T, Mezawa M, He P, Honjo S, et al. The roles of transforming growth factor-$\beta$ and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun 2011; 407: 68-73. https://doi.org/10.1016/j.bbrc.2011.02.106
  14. Alessi MC, Bastelica D, Morange P, Berthet B, Leduc I, Verdier M, Geel O, Juhan-Vague I. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000; 49: 1374-80. https://doi.org/10.2337/diabetes.49.8.1374
  15. Jia H, Yu L, Gao B, Ji Q. Association between the T869C polymorphism of transforming growth factor-beta 1 and diabetic nephropathy: a meta-analysis. Endocrine 2011; 40: 372-8. https://doi.org/10.1007/s12020-011-9503-0
  16. Rosmond R, Chagnon M, Bouchard C, Bjorntorp P. Increased abdominal obesity, insulin and glucose levels in nondiabetic subjects with a T29C polymorphism of the transforming growth factor-beta1 gene. Horm Res 2003; 59: 191-4.
  17. Gomez-Ambrosi J, Catalan V, Rodriguez A, Ramirez B, Silva C, Gil MJ, Salvador J, Fruhbeck G. Involvement of serum vascular endothelial growth factor family members in the development of obesity in mice and humans. J Nutr Biochem 2010; 21: 774-80. https://doi.org/10.1016/j.jnutbio.2009.05.004
  18. Belo VA, Souza-Costa DC, Luizon MR, Izidoro-Toledo TC, Lanna CM, Pinheiro LC, Tanus-Santos JE. Vascular endothelial growth factor haplotypes associated with childhood obesity. DNA Cell Biol 2011; 30: 709-14. https://doi.org/10.1089/dna.2011.1260
  19. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 2000; 12: 1232-5. https://doi.org/10.1006/cyto.2000.0692
  20. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem 2008; 114: 183-94. https://doi.org/10.1080/13813450802181047
  21. Ishii T, Hirose H, Saito I, Nishikai K, Maruyama H, Saruta T. Tumor necrosis factor alpha gene G-308A polymorphism, insulin resistance, and fasting plasma glucose in young, older, and diabetic Japanese men. Metabolism 2000; 49: 1616-8. https://doi.org/10.1053/meta.2000.18560
  22. Lagou V, Manios Y, Moran CN, Bailey ME, Grammatikaki E, Oikonomou E, Ioannou E, Moschonis G, Wilson RH, Pitsiladis YP. Developmental changes in adiposity in toddlers and preschoolers in the GENESIS study and associations with the ACE I/D polymorphism. Int J Obes 2007; 31: 1052-60. https://doi.org/10.1038/sj.ijo.0803605
  23. Burdette H, Zemel B, Stallings VA. Use of technical measurements in nutritional assessment. In: Koletzko B, editor. Pediatric Nutrition in Practice. Basel, Karger, 2008, p17-20.
  24. McCormick DP, Sarpong K, Jordan L, Ray LA, Jain S. Infant obesity: are we ready to make this diagnosis? J Pediatr 2010; 157: 15-9. https://doi.org/10.1016/j.jpeds.2010.01.028
  25. Yim HE, Bae IS, Yoo KH, Hong YS, Lee JW. Genetic control of VEGF and TGF-beta1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux. Pediatr Res 2007; 62: 183-7. https://doi.org/10.1203/PDR.0b013e31809871f1
  26. Soubrier F, Martin S, Alonso A, Visvikis S, Tiret L, Matsuda F, Lathrop GM, Farrall M. High-resolution genetic mapping of the ACE-linked QTL influencing circulating ACE activity. Eur J Hum Genet 2002; 10: 553-61. https://doi.org/10.1038/sj.ejhg.5200847
  27. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343-6. https://doi.org/10.1172/JCI114844
  28. Uemura K, Nakura J, Kohara K, Miki T. Association of ACE I/D polymorphism with cardiovascular risk factors. Hum Genet 2000; 107: 239-42. https://doi.org/10.1007/s004390000358
  29. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Wilson RH, Pitsiladis YP. Effects of interaction between angiotensin I-converting enzyme polymorphisms and lifestyle on adiposity in adolescent Greeks. Obes Res 2005; 13: 1499-504. https://doi.org/10.1038/oby.2005.181
  30. Shanmugam S, Corvol P, Gasc JM. Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 1996; 28: 91-7. https://doi.org/10.1161/01.HYP.28.1.91
  31. Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, Quignard-Boulange A. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 2005; 54: 991-9. https://doi.org/10.2337/diabetes.54.4.991
  32. Kotani K, Fujiwara S, Tsuzaki K, Sano Y, Matsuoka Y, Hamada T, Sakane N. An association between angiotensin II type 2 receptor gene A/C3123 polymorphism and glycemic control marker in a general Japanese population. Mol Biol Rep 2009; 36: 917-20. https://doi.org/10.1007/s11033-008-9263-y
  33. Kanra AR, Tulgar-Kinik S, Verdi H, Atac FB, Yazici AC, Ozbek N. Transforming growth factor-beta1 (509 C/T, 915 G/C, 869 T/C) polymorphisms are not related to obesity in Turkish children. Turk J Pediatr 2011; 53: 645-50.
  34. Hube F, Birgel M, Lee YM, Hauner H. Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: role of obesity and non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1999; 29: 672-8. https://doi.org/10.1046/j.1365-2362.1999.00520.x
  35. Popko K, Gorska E, Pyrzak B, Telmaszczyk-Emmel A, Wisniewska A, Majcher A, Wasik M, Demkow U. Influence of proinflammatory cytokine gene polymorphism on childhood obesity. Eur J Med Res 2009; 14 Suppl 4: 59-62. https://doi.org/10.1186/2047-783X-14-2-59
  36. Walston J, Seibert M, Yen CJ, Cheskin LJ, Andersen RE. Tumor necrosis factor-alpha-238 and -308 polymorphisms do not associated with traits related to obesity and insulin resistance. Diabetes 1999; 48: 2096-8. https://doi.org/10.2337/diabetes.48.10.2096
  37. Yim HE, Ha KS, Bae IS, Yoo KH, Hong YS, Lee JW. Overweight, hypertension and renal dysfunction in adulthood of neonatally overfed rats. J Nutr Biochem 2013; 24: 1324-33. https://doi.org/10.1016/j.jnutbio.2012.10.007
  38. Yang SJ, Kim S, Park H, Kim SM, Choi KM, Lim Y, Lee M. Sex-dependent association between angiotensin-converting enzyme insertion/deletion polymorphism and obesity in relation to sodium intake in children. Nutrition 2013; 29: 525-30. https://doi.org/10.1016/j.nut.2012.09.001
  39. Lee HJ, Kim IK, Kang JH, Ahn Y, Han BG, Lee JY, Song J. Effects of common FTO gene variants associated with BMI on dietary intake and physical activity in Koreans. Clin Chim Acta 2010; 411: 1716-22. https://doi.org/10.1016/j.cca.2010.07.010
  40. Dev DA, McBride BA, Fiese BH, Jones BL, Cho H; Behalf Of The Strong Kids Research Team. Risk factors for overweight/obesity in preschool children: an ecological approach. Child Obes 2013; 9: 399-408. https://doi.org/10.1089/chi.2012.0150

Cited by

  1. Letter to the Editor: Genetic Contributions to Childhood Obesity: Association of Candidate Gene Polymorphisms and Overweight/Obesity in Korean Preschool Children vol.33, pp.7, 2017, https://doi.org/10.3346/jkms.2018.33.e68
  2. The Author's Response: Genetic Contributions to Childhood Obesity: Association of Candidate Gene Polymorphisms and Overweight/Obesity in Korean Preschool Children vol.33, pp.7, 2017, https://doi.org/10.3346/jkms.2018.33.e71
  3. Angiotensin-converting enzyme gene insertion/deletion polymorphism is not associated with BMI in Korean adults vol.24, pp.1, 2020, https://doi.org/10.20463/pan.2020.0005
  4. Tracking Preschoolers’ Lifestyle Behaviors and Testing Maternal Sociodemographics and BMI in Predicting Child Obesity Risk vol.150, pp.12, 2017, https://doi.org/10.1093/jn/nxaa292
  5. Metabolomic Signatures for the Effects of Weight Loss Interventions on Severe Obesity in Children and Adolescents vol.12, pp.1, 2017, https://doi.org/10.3390/metabo12010027