DOI QR코드

DOI QR Code

Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device

  • Choi, Min Joo (Department of Medicine, School of Medicine, Jeju National University) ;
  • Kang, Gwansuk (Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University) ;
  • Huh, Jung Sik (Department of Medicine, School of Medicine, Jeju National University)
  • Received : 2016.11.15
  • Accepted : 2017.02.05
  • Published : 2017.06.30

Abstract

This study was to optically visualize the cavitation bubbles produced by a clinical shock wave and to look into their geometric features of the resulting cavitation bubbles in relation to the driving shock wave field. A clinical shock wave therapeutic system was taken for shock wave production. The shock wave induced cavitation bubbles were captured by a professional camera under the illumination of a micro-pulse LED light. The light exposure was set to last for the whole life time of bubbles from formation to subsequent collapses. It was shown that the cavitation bubbles appeared mostly in the vicinity of the focus. The bubbles became more and larger as approaching to the focus. The cavitation bubbles formed jet streams which became enlarged (stronger) as the shock wave device output setting increased. The bubble cloud boundary was reasonably fitted to an elongated ellipsoid characteristically similar to the acoustic focal area. The bubble clouds were enlarged as the output setting increased. The geometric features of the cavitation bubbles characteristically similar to those of the focusing acoustic field have potential to provide the therapeutic focal information without time consuming hydrophone measurements of the shock wave field causing damages of the expensive sensor. The present study is limited to the static afterimages of the cavitation bubbles and investigation including the bubble dynamics is suggested to deliver the more realistic therapeutic area of the shock wave therapy.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF, Jeju National University Hospital

References

  1. Lingeman JE, Kim SC, Kuo RL, McAteer JA, Evan AP. Shockwave lithotripsy: anecdotes and insights. J Endourol. 2003;17(9):687-93. https://doi.org/10.1089/089277903770802191
  2. Choi MJ. Application of ultrasound in medicine: therapeutic ultrasound and ultrasound contrast agent. J Korean Soc Noise Vib Eng. 2000;10(4):743-59.
  3. Chaussy CG, Brendel W, Schmiedt E. ESWL: past, present, and future. J Endourol. 1988;2(2):97-105. https://doi.org/10.1089/end.1988.2.97
  4. Eisenmenger W. The mechanism of stone fragmentation in ESWL. Ultrasound Med Biol. 2001;27:683-6693. https://doi.org/10.1016/S0301-5629(01)00345-3
  5. Choi MJ. Theoretical aspects of high amplitude pulsed ultrasound used in lithotripsy, PhD Thesis. University of Bath, Bath, England; 1992. pp. 127-175.
  6. Schulze H, Hertle L, Graff J, Funke PJ, Senge T. Combined treatment of branched calculi by percutaneous nephrolithotomy and extracorporeal shock wave lithotripsy. J Urol. 1986;135:1138-41. https://doi.org/10.1016/S0022-5347(17)46017-4
  7. Choi MJ, Cho SC, Paeng DG, Lee KI. Extracorporeal shock wave therapy: its acoustical aspects. J Acoust Soc Korea. 2010;29(3E):119-30.
  8. Bachmann CE, Gruber G, Konermann W, Arnold A, Gruber GM and Ueberle F. ESWT and ultrasound imaging of the musculoskeletal system. Steinkopff Verlag Darmstart. Germany; 2001. pp. 119-122.
  9. Kudo P, Dainty K, Clarfield M, Coughlin L, Lavoie P, Lebrun C. Radomized, placebo-controlled, double-blind clinical trial evaluating the treatment of plantar fasciitis with as extracorporeal shock wave therapy (ESWT) device: A North American Confirmatory study. J Orthop Res. 2006;24:115-23. https://doi.org/10.1002/jor.20008
  10. Romeo P, Lavanga V, Pagani D, Sansone V. Extracorporeal shock wave therapy in musculoskeletal disorders: a review. Med Princ Pract. 2014;23:7-13. https://doi.org/10.1159/000355472
  11. Waugh CM, Morrissey D, Jones E, Riley GP, Langberg H, Screen HR. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cells Mater. 2015;29:268-80. https://doi.org/10.22203/eCM.v029a20
  12. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;20(7):11. https://doi.org/10.1177/230949901202000103
  13. Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010;24:133-41. https://doi.org/10.1097/BOT.0b013e3181b26470
  14. Rompe JD, Maffulli N. Repetitive shock wave therapy for lateral elbow tendinopathy (tennis elbow): a systematic and qualitative analysis. Br Med Bull. 2007;83:355-78. https://doi.org/10.1093/bmb/ldm019
  15. Gruenwald I, Appel B, Kitrey ND, Vardi Y. Shockwave treatment of erectile dysfunction. Ther Adv Urol. 2013;5(2):95-9. https://doi.org/10.1177/1756287212470696
  16. Schaden W, Thiele R, Kolpl C, Pusch A. Extracorporeal shock wave therapy (ESWT) in skin lesions. ISMST Newsl. 2007;2(1):13-4.
  17. Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Teot L, Stojadinovic A, Schaden W. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012;20(4):456-65. https://doi.org/10.1111/j.1524-475X.2012.00796.x
  18. Ferraro GA, De Francesco F, Cataldo C, Rossano F, Nicoletti G, D'Andrea F. Synergistic effects of cryolipolysis and shock waves for noninvasive body contouring. Aesthetic Plast Surg. 2012;36(3):666-79. https://doi.org/10.1007/s00266-011-9832-7
  19. Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, Takeshita A, Sunagawa K, Shimokawa H. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 2006;17:63-70. https://doi.org/10.1097/00019501-200602000-00011
  20. Kikuchi Y, Ito K, Ito Y, Shiroto T, Tsuburaya R, Aizawa K, Hao K, Fukumoto Y, Takahashi J, Takeda M, Nakayama M, Yasuda S, Kuriyama S, Tsuji I, Shimokawa H. Double-blind and placebocontrolled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ J. 2010;74:589-91. https://doi.org/10.1253/circj.CJ-09-1028
  21. Jargin SV. Shock wave therapy of ischemic heart disease in the light of general pathology. Int J Cardiol. 2010;144(1):116-7. https://doi.org/10.1016/j.ijcard.2008.12.198
  22. Vasyuk Y, Hadzegova A, Shkolnik E, Kopeleva M, Krikunova O, Iouchtchouk E, Aronova E, Ivanova S. Initial clinical experience with extracorporeal shock wave therapy in treatment of ischemic heart failure. Congest Heart Fail. 2010;16:226-30. https://doi.org/10.1111/j.1751-7133.2010.00182.x
  23. Wang Y, Guo T, Ma T, Cai H, Tao S, Peng Y, Yang P, Chen M, Gu Y. A modified regimen of extracorporeal cardiac shock wave therapy for treatment of coronary artery disease. Cardiovasc Ultrasound. 2012;10:35. https://doi.org/10.1186/1476-7120-10-35
  24. Consensus statement recommendations for the use of extracorporeal shockwave technology in medical indications, The International Society for Medical Shockwave Treatment; 2008. https://www.shockwavetherapy.org/fileadmin/user_upload/dokumente/PDFs/Formulare/ismst-consensus-statement-indications-2015.pdf. Accessed 11 Nov 2016.
  25. Coleman AJ, Saunders JE. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol. 1989;15(3):213-27. https://doi.org/10.1016/0301-5629(89)90066-5
  26. Choi MJ, Coleman AJ, Saunders JE. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock-wave lithotripter. Phys Med Biol. 1993;38:1561-73. https://doi.org/10.1088/0031-9155/38/11/002
  27. Coleman AJ, Choi MJ, Saunders JE. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol. 1996;22(8):1079-87. https://doi.org/10.1016/S0301-5629(96)00118-4
  28. Leighton TG, Fedele F, Coleman AJ, McCarthy C, Ryves S, Hurrell AM, De Stefano A, White PR. A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment. Ultrasound Med Biol. 2008;34(10):1651-65. https://doi.org/10.1016/j.ultrasmedbio.2008.03.011
  29. Ghorbani M, Oral O, Ekici S, Gozuacik D, Kosar A. Review on lithotripsy and cavitation in urinary stone therapy. IEEE Rev Biomed Eng. 2016;9:264-82. https://doi.org/10.1109/RBME.2016.2573381
  30. Cho SC. Optimization of an electromagnetic cylindrical shockwave transducer used in extracorporeal shock wave therapy. MSc Thesis. Jeju National University, Jeju, Korea; 2008. pp. 4-17.
  31. Choi MJ. Precise determination of the cavitation activity caused by a lithotripsy field using a wavelet transformation. Final Program and Abstract, The Physics and Technology of Medical Ultrasound Biennial Meeting, 26-28 March 2001, York, UK, p. 60.
  32. Lee SH, Lee JH, Lee HJ, Choi MJ. Electromagnetic and dynamic properties of an electromagnetic type shock wave source: numerical simulation. Conf Proc Acoust Soc Korea. 2001;20(1s):917-20.
  33. Choi MJ, Cho SC, Paeng DG, Lee KI, Coleman AJ. Thickness effects of the metallic and insulating membranes of a cylindrical electromagnetic shock wave transducer. J Korean Phys Soc. 2011;59(6):3583-7. https://doi.org/10.3938/jkps.59.3583
  34. Johnk CTA. Engineering electromagnetic fields and waves. 2nd ed. New York: Wiley; 1988. p. 277-80.
  35. Staudenraus J, Eisenmenger W. Fiber-optic probe hydrophone for ultrasonic and shock wave measurements in water. Ultrasonics. 1993;31(4):267-73. https://doi.org/10.1016/0041-624X(93)90020-Z
  36. Kang G, Cho SC, Coleman AJ, Choi MJ. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone. J Aoust Soc Am. 2014;135(3):1139-48. https://doi.org/10.1121/1.4863199

Cited by

  1. The beginning of a new era: treatment of erectile dysfunction by use of physical energies as an alternative to pharmaceuticals vol.31, pp.3, 2017, https://doi.org/10.1038/s41443-019-0142-y
  2. 식약처에서 허가된 집속형 ESWT 치료기의 음향 출력 분석 vol.39, pp.4, 2017, https://doi.org/10.7776/ask.2020.39.4.303