DOI QR코드

DOI QR Code

Experimental Infection of Different Tomato Genotypes with Tomato mosaic virus Led to a Low Viral Population Heterogeneity in the Capsid Protein Encoding Region

  • Sihelska, Nina (Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences) ;
  • Vozarova, Zuzana (Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences) ;
  • Predajna, Lukas (Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences) ;
  • Soltys, Katarina (Comenius University Science Park, Comenius University in Bratislava) ;
  • Hudcovicova, Martina (National Agriculture and Food Centre-Research Institute of Plant Production) ;
  • Mihalik, Daniel (National Agriculture and Food Centre-Research Institute of Plant Production) ;
  • Kraic, Jan (National Agriculture and Food Centre-Research Institute of Plant Production) ;
  • Mrkvova, Michaela (Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius) ;
  • Kudela, Otakar (Zelseed Ltd.) ;
  • Glasa, Miroslav (Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences)
  • Received : 2017.04.11
  • Accepted : 2017.06.12
  • Published : 2017.10.01

Abstract

The complete genome sequence of a Slovak SL-1 isolate of Tomato mosaic virus (ToMV) was determined from the next generation sequencing (NGS) data, further confirming a limited sequence divergence in this tobamovirus species. Tomato genotypes Monalbo, Mobaci and Moperou, respectively carrying the susceptible tm-2 allele or the Tm-1 and Tm-2 resistant alleles, were tested for their susceptibility to ToMV SL-1. Although the three tomato genotypes accumulated ToMV SL-1 to similar amounts as judged by semiquantitative DAS-ELISA, they showed variations in the rate of infection and symptomatology. Possible differences in the intra-isolate variability and polymorphism between viral populations propagating in these tomato genotypes were evaluated by analysis of the capsid protein (CP) encoding region. Irrespective of genotype infected, the intra-isolate haplotype structure showed the presence of the same highly dominant CP sequence and the low level of population diversity (0.08-0.19%). Our results suggest that ToMV CP encoding sequence is relatively stable in the viral population during its replication in vivo and provides further demonstration that RNA viruses may show high sequence stability, probably as a result of purifying selection.

Keywords

References

  1. Broadbent, L. 1976. Epidemiology and control of tomato mosaic virus. Annu. Rev. Phytopathol. 14:75-96. https://doi.org/10.1146/annurev.py.14.090176.000451
  2. Clement, M., Posada, D. and Crandall, K. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  3. Dawson, J. R. O. 1967. The adaptation of tomato mosaic virus to resistant tomato plants. Ann. Appl. Biol. 60:209-214. https://doi.org/10.1111/j.1744-7348.1967.tb04473.x
  4. Elena, S. F. and Sanjuan, R. 2007. Virus evolution: insights from an experimental approach. Annu. Rev. Ecol. Evol. Syst. 38:27-52. https://doi.org/10.1146/annurev.ecolsys.38.091206.095637
  5. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39:157-186. https://doi.org/10.1146/annurev.phyto.39.1.157
  6. Glasa, M., Labonne, G. and Quiot, J. B. 2003. Effect of temperature on Plum pox virus infection. Acta Virol. 47:49-52.
  7. Hall, T. J. 1980. Resistance at the Tm-2 locus in the tomato to tomato mosaic virus. Euphytica 29:189-197. https://doi.org/10.1007/BF00037266
  8. Hollings, M. and Huttinga, H. 1976. Tomato mosaic virus. Descriptions of plant viruses. No. 156. URL http://www.dpvweb.net/dpv/showdpv.php?dpvno=156/.
  9. Hudcovicova, M., Korbelova, E., Slikova, S., Klcova, L., Mihalik, D. and Kraic, J. 2015. Molecular selection of tomato and pepper breeding lines possessing resistance alleles against tobamoviruses. Agriculture 61:33-37.
  10. Ishibashi, K. and Ishikawa, M. 2014. Mechanisms of tomato mosaic virus RNA replication and its inhibition by the host resistance factor Tm-1. Curr. Opin. Virol. 9:8-13. https://doi.org/10.1016/j.coviro.2014.08.005
  11. Ishibashi, K. and Ishikawa, M. 2016. Replication of Tobamovirus RNA. Annu. Rev. Phytopathol. 54:55-78. https://doi.org/10.1146/annurev-phyto-080615-100217
  12. Lanfermeijer, F. C., Dijkhuis, J., Sturre, M. J., de Haan, P. and Hille, J. 2003. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol. Biol. 52:1037-1049.
  13. Librado, P. and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  14. Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H. and Okada, Y. 1989. Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1:515-522. https://doi.org/10.1105/tpc.1.5.515
  15. Moury, B., Desbiez, C., Jacquemond, M. and Lecoq, H. 2006. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv. Virus Res. 67:49-87.
  16. Ohnishi, J., Hirai, K., Kanda, A., Usugi, T., Meshi, T. and Tsuda, S. 2009. The coat protein of Tomato mosaic virus L11Y is associated with virus-induced chlorosis on infected tobacco plants. J. Gen. Plant Pathol. 75:297-306. https://doi.org/10.1007/s10327-009-0177-x
  17. Ohno, T., Aoyagi, M., Yamanashi, Y., Saito, H., Ikawa, S., Meshi, T. and Okada, Y. 1984. Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J. Biochem. 96:1915-1923. https://doi.org/10.1093/oxfordjournals.jbchem.a135026
  18. Pelham, J. 1966. Resistance in tomato to tobacco mosaic virus. Euphytica 15:258-267. https://doi.org/10.1007/BF00022331
  19. Pelham, H. R. 1978. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272:469-471. https://doi.org/10.1038/272469a0
  20. Predajna, L., Subr, Z., Candresse, T. and Glasa, M. 2012. Evaluation of the genetic diversity of Plum pox virus in a single plum tree. Virus Res. 167:112-117. https://doi.org/10.1016/j.virusres.2012.04.002
  21. Rodriguez-Cerezo, E. and Garcia-Arenal, F. 1989. Genetic heterogeneity of the RNA genome population of the plant virus U5-TMV. Virology 170:418-423. https://doi.org/10.1016/0042-6822(89)90432-7
  22. Shi, A., Vierling, R., Grazzini, R., Chen, P., Caton, H. and Panthee, D. 2011. Molecular markers for Tm-2 alleles of Tomato mosaic virus resistance in tomato. Am. J. Plant Sci. 2:180-189. https://doi.org/10.4236/ajps.2011.22020
  23. Sihelska, N., Predajna, L., Nagyova, A., Soltys, K., Budis, J., Gubis, J., Mrkvova, M., Kraic, J., Mihalik, D., Glasa, M. 2016. Detection and molecular characterization of Slovak tomato isolates belonging to two recombinant strains of Potato virus Y. Acta Virol. 60:347-353. https://doi.org/10.4149/av_2016_04_347
  24. Strasser, M. and Pfitzner, A. J. 2007. The double-resistance-breaking Tomato mosaic virus strain ToMV1-2 contains two independent single resistance-breaking domains. Arch. Virol. 152:903-914. https://doi.org/10.1007/s00705-006-0915-8
  25. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197