References
- Azim, A., Davood, Z., Ali, F., Mohammad, R.M., Dariush, N., Tangestaninejad, S., Moghadam, M. and Bararpour, N. (2009), "Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study", Am. J. Appl. Sci., 6(1), 691-695. https://doi.org/10.3844/ajassp.2009.691.695
- Daniel, M.C. and Astruc, D. (2004), "Gold nanoparticles: Assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology", Chem. Rev., 104(1), 293-346. https://doi.org/10.1021/cr030698+
- Fenger, R., Fertitta, E., Kirmse, H., Thunemann, A.F. and Rademann, K. (2012), "Size dependent catalysis with CTAB-stabilized gold nanoparticles", Phys. Chem. Chem. Phys., 14(26), 9343-9349. https://doi.org/10.1039/c2cp40792b
- Francyelle, M.O., Lucas, R.B.A.N., Claudia, M.S.C., Mario, R.M. and Monique, G.A.S. (2016), "Aqueousphase catalytic chemical reduction of p-nitrophenol employing soluble gold nanoparticles with different shapes", Catalysts, 6(12), 215, DOI: 10.3390/catal6120215
- Ghoreishi, S.M., Behpour, M. and Khayatkashani, M. (2011), "Green synthesis of silver and gold nanoparticles using rosa damascena and its primary application in electrochemistry", Physica E, 44(1), 97-104. https://doi.org/10.1016/j.physe.2011.07.008
- Guzman, M.G., Dille, J. and Godet, S. (2008), "Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity", Int. J. Chem. Biomol. Eng., 2(3), 91-98.
- Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M. and Xia, Y. (2006), "Gold nanostructures: engineering their plasmonic properties for biomedical applications", Chem. Soc. Rev., 35(11), 1084-1094. https://doi.org/10.1039/b517615h
- Huang, G.S., Chen, Y.S. and Yeh, H.W. (2006), "Measuring the flexibility of immunoglobulin by gold nanoparticles", Nano Lett., 6(11), 2467-2471. https://doi.org/10.1021/nl061598x
- Maruyama, T., Fujimoto, Y. and Maekawa, T. (2015), "Synthesis of gold nanoparticles using various amino acids", J. Colloid Interf. Sci., 447, 254-257. https://doi.org/10.1016/j.jcis.2014.12.046
- Nadagouda, M.N. and Varma, R.S. (2008), "Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract", Green Chem., 10(8), 859-862. https://doi.org/10.1039/b804703k
- Pastoriza-Santos, I. and Liz-Marzan, L.M. (2002), "Synthesis of Silver nanoprisms in DMF", Nano Lett., 2(8), 903-905. https://doi.org/10.1021/nl025638i
- Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A. and Haick, H. (2009), "Diagnosing lung cancer in exhaled breath using gold nanoparticles", Nat. Nanotechnol., 4(10), 669-673. https://doi.org/10.1038/nnano.2009.235
- Philip, D. (2009), "Honey mediated green synthesis of gold nanoparticles", Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 73(4), 650-653. https://doi.org/10.1016/j.saa.2009.03.007
- Radha, N. and Mostafa, A.E. (2005), "Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability", J. Phys. Chem. B, 109, 12663-12676. https://doi.org/10.1021/jp051066p
- Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2005), "Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings", Chem. Mater., 17(3), 566-572. https://doi.org/10.1021/cm048292g
- Singh, V., Khullar, P., Dave, P.N., Kaur, G. and Bakshi, M.S. (2013), "Ecofriendly route to synthesize nanomaterials for biomedical applications; bioactive polymers on the shape control effects of nanomaterials under different reaction conditions", ACS Sust. Chem. Eng., 1(11), 1417-1431. https://doi.org/10.1021/sc400159x
- Tapan, K.S. and Andrey, L.R. (2009), "Nonspherical noble metal nanoparticles: Colloid chemical synthesis and morphology control", Adv. Mater., 22(16), 1781-1804. https://doi.org/10.1002/adma.200901271
- Vivek, D., Soumya, L., Bharadwaj, S., Shilpa, C., Deepika, B. and Sreedhar, B. (2016), "Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity", Mat. Sci. Eng. C, 58, 36-43. https://doi.org/10.1016/j.msec.2015.08.018
Cited by
- Bimetallic M-Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater vol.11, pp.10, 2017, https://doi.org/10.3390/nano11102570
- Andean Capuli Fruit Derived Anisotropic Gold Nanoparticles with Antioxidant and Photocatalytic Activity vol.11, pp.4, 2017, https://doi.org/10.1007/s12668-021-00911-9