DOI QR코드

DOI QR Code

Biological Control of Bacterial Fruit Blotch of Watermelon Pathogen (Acidovorax citrulli) with Rhizosphere Associated Bacteria

  • Adhikari, Mahesh (Division of Biological Resources Sciences, Kangwon National University) ;
  • Yadav, Dil Raj (Division of Biological Resources Sciences, Kangwon National University) ;
  • Kim, Sang Woo (Division of Biological Resources Sciences, Kangwon National University) ;
  • Um, Young Hyun (Division of Biological Resources Sciences, Kangwon National University) ;
  • Kim, Hyun Seung (Division of Biological Resources Sciences, Kangwon National University) ;
  • Lee, Seong Chan (Protected Horticulture Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Song, Jeong Young (Department of Applied Biology, Chungnam National University) ;
  • Kim, Hong Gi (Department of Applied Biology, Chungnam National University) ;
  • Lee, Youn Su (Division of Biological Resources Sciences, Kangwon National University)
  • Received : 2016.09.12
  • Accepted : 2016.12.05
  • Published : 2017.04.01

Abstract

Bacterial fruit blotch (BFB), which is caused by Acidovorax citrulli, is a serious threat to watermelon growers around the world. The present study was conducted to screen effective rhizobacterial isolates against 35 different A. citrulli isolates and determine their efficacy on BFB and growth parameters of watermelon. Two rhizobacterial isolates viz. Paenibacillus polymyxa (SN-22), Sinomonas atrocyanea (NSB-27) showed high inhibitory activity in the preliminary screening and were further evaluated for their effect on BFB and growth parameters of three different watermelon varieties under greenhouse conditions. The greenhouse experiment result revealed that SN-22 and NSB-27 significantly reduced BFB and had significant stimulatory effect on total chlorophyll content, plant height, total fresh weight and total dry weight compared to uninoculated plants across the tested three watermelon varieties. Analysis of the 16S ribosomal RNA (rRNA) sequences revealed that strains SN-22 belong to P. polymyxa and NSB-27 to S. atrocyanea with the bootstrap value of 99% and 98%, respectively. The isolates SN-22 and NSB-27 were tested for antagonistic and PGP traits. The result showed that the tested isolates produced siderophore, hydrolytic enzymes (protease and cellulose), chitinase, starch hydrolytic enzymes and they showed phosphate as well as zinc solubilizing capacity. This is the first report of P. polymyxa (SN-22) and S. atrocyanea (NSB-27) as biocontrol-plant growth promoting rhizobacteria on watermelon.

Keywords

References

  1. Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26:1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  2. Ash, C., Priest, F. G. and Collins, M. D. 1994. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253-260. https://doi.org/10.1007/BF00873085
  3. Bahar, O., Kritzman, G. and Burdman, S. 2009. Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. Eur. J. Plant Pathol. 123: 71-83. https://doi.org/10.1007/s10658-008-9345-7
  4. Beatty, P. H. and Jensen, S. E. 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48:159-169. https://doi.org/10.1139/w02-002
  5. Cappuccino, J. G. and Sherman, N. 2006. Microbiology: a laboratory manual. 6th ed. Pearson Education, San Francisco, CA, USA.
  6. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80:115-123. https://doi.org/10.1007/s00253-008-1520-4
  7. Dawwam, G. E., Elbeltagy, A., Emara, H. M., Abbas, I. H. and Hassan, M. M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58:195-201.
  8. [FAO] Food and Agriculture Organization (2011 onwards). FAOSTAT. URL http://www.fao.org/faostat/ [24 August 2016].
  9. Fessehaie, A. and Walcott, R. R. 2005. Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp. citrulli. Phytopathology 95:413-419. https://doi.org/10.1094/PHYTO-95-0413
  10. Hammami, I., Jaouadi, B., Bacha, A. B., Rebai, A., Bejar, S., Nesme, X. and Rhouma, A. 2012. Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol. Bioprocess Eng. 17:41-49. https://doi.org/10.1007/s12257-010-0401-8
  11. He, Z., Kisla, D., Zhang, L., Yuan, C., Green-Church, K. B. and Yousef, A. E. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73:168-178. https://doi.org/10.1128/AEM.02023-06
  12. Hopkins, D. L., Thompson, C. M. and Elmstrom, G. W. 1993. Resistance of watermelon seedlings and fruit blotch bacterium. HortScience 28:122-123.
  13. Jiang, C. H., Wu, F., Yu, Z. Y., Xie, P., Ke, H. J., Li, H. W., Yu, Y. Y. and Guo, J. H. 2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol. Res. 170:95-104. https://doi.org/10.1016/j.micres.2014.08.009
  14. Karpunina, L. V., Mel'nikova, U. Y. and Konnova, S. A. 2003. Biological role of lectins from the nitrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plant-root interactions. Curr. Microbiol. 47:376-378. https://doi.org/10.1007/s00284-002-3987-z
  15. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  16. Kokalis-Burelle, N., Vavrina, C. S., Reddy, M. S. and Kloepper, J. W. 2003. Amendment of muskmelon and watermelon transplant media with plant growth promoting rhizobacteria: effects on transplant quality, disease, and nematode resistance. HortTechnology 13:476-482.
  17. Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79:761-765. https://doi.org/10.1094/PD-79-0761
  18. Mesanza, N., Iturritxa, E. and Patten, C. L. 2016. Native rhizobacteria as biocontrol agents of Heterobasidion annosum s.s. and Armillaria mellea infection of Pinus radiata. Biol. Control 101:8-16. https://doi.org/10.1016/j.biocontrol.2016.06.003
  19. Mu'minah, Baharuddin, Subair, H. and Fahruddin. 2015. Isolation and screening bacterial exopolysaccharide (EPS) from potato rhizosphere in highland and the potential as a producer Indole Acetic Acid (IAA). Procedia Food Sci. 3: 74-81. https://doi.org/10.1016/j.profoo.2015.01.007
  20. Noh, J., Kim, J. H., Lim, J. H., Kim, T. B., Seong, M. H., Jung, G. T., Kim, J. M., Cheong, S. S., Oh, N. K. and Lee, W. H. 2014. Occurrence of diseases and case of clinical diagnosis on watermelon in South Korea, 2008-2012. Res. Plant Dis. 20:8-14. https://doi.org/10.5423/RPD.2014.20.1.008
  21. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbes species. Microbiology 17:362-370.
  22. Raj, D. P. R. S., Linda, R. and Babyson, R. S. 2014. Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soil. Int. J. Innov. Sci. Eng. Technol. 1:317-324.
  23. Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N. and Joshi, O. P. 2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisils of central India. Appl. Soil Ecol. 73:87-96. https://doi.org/10.1016/j.apsoil.2013.08.009
  24. Raza, W. and Shen, Q. 2010. Growth, $Fe^{3+}$ reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr. Microbiol. 61:390-395. https://doi.org/10.1007/s00284-010-9624-3
  25. Roberts, W. K. and Selitrennikoff, C. P. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169-176.
  26. Ryan, A. D., Kinkel, L. L. and Schottel, J. L. 2004. Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Sci. Technol. 14:301-311. https://doi.org/10.1080/09583150410001665187
  27. Ryu, C. M., Kim, J. W., Choi, O., Park, S. Y., Park, S. H. and Park, C. S. 2005. Nature of a root-associated Paenibacillus polymyxa from field grown winter barley in Korea. J. Microbiol. Biotechnol. 15:984-991.
  28. SAS Institute. 2002. SAS/STAT(R) 9.2 user's guide for personal computers. Version 9.2 edition. SAS Institute, Cary, NC, USA.
  29. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  30. Shi, Y., Yang, L., Wang, X., Gao, Y., Liu, W. and Lou, K. 2012. Biocontrol of bacterial spot diseases of muskmelon using Paenibacillus polymyxa G-14. Afr. J. Biotechnol. 11:16845- 16851.
  31. Singh, N., Pandey, P., Dubey, R. C. and Maheshwari, D. K. 2008. Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J. Microbiol. Biotechnol. 24:1669-1679. https://doi.org/10.1007/s11274-008-9680-z
  32. Sivasakhti, S., Usharani, G. and Saranraj, P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-- Pseudomonas fluorescence and Bacillus subtilis: a review. Afr. J. Agric. Res. 9:1265-1277.
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  34. Tolba, I. H. and Soliman, M. A. 2013. Efficacy of native antagonistic bacterial isolates in biological control of crown gall disease in Egypt. Ann. Agric. Sci. 58:43-49.
  35. Tong, Y., Guo, G., Xu, J., Ji, Z. and Chen, X. 2004. Induced resistance to gray mold in tomato plant by antagonistic bacteria. Chin. J. Biol. Control. 20:187-189.
  36. Zhou, Y., Chen, X., Zhang, Y., Wang, W. and Xu, J. 2012. Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int. J. Syst. Evol. Microbiol. 62:764-769. https://doi.org/10.1099/ijs.0.030361-0

Cited by

  1. Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants vol.101, pp.23-24, 2017, https://doi.org/10.1007/s00253-017-8550-8