DOI QR코드

DOI QR Code

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo (R&D Center of Green Biotech Co.) ;
  • Yu, Nan Hee (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Jaeho (R&D Center of Green Biotech Co.) ;
  • Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Shin, Chul Soo (Department of Biotechnology, Yonsei University)
  • Received : 2017.04.19
  • Accepted : 2017.04.30
  • Published : 2017.06.01

Abstract

To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, New York, NY, USA. pp. 510-514.
  2. Ahn, J. Y., Park, M. S., Kim, S. K., Choi, G. J., Jang, K. S., Choi, Y. H., Choi, J. E., Kim, I. S. and Kim, J. C. 2009. Suppression effect of gray mold and late blight on tomato plants by rhamnolipid B. Res. Plant Dis. 15:222-229. https://doi.org/10.5423/RPD.2009.15.3.222
  3. Berger, F., Li, H., White, D., Frazer, R. and Leifert, C. 1996. Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot1 in high-humidity fogging glasshouses. Phytopathology 86:428-433. https://doi.org/10.1094/Phyto-86-428
  4. Choi, G. J., Kim, J. C., Jang, K. S., Cho, K. Y. and Kim, H. T. 2008. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen. J. Microbiol. Biotechnol. 18:167-170.
  5. Choi, G. J., Kim, J. C., Jang, K. S., Nam, M. H., Lee, S. W. and Kim, H. T. 2009. Biocontrol activity of Acremonium strictum BCP against botrytis diseases. Plant Pathol. J. 25:165-171. https://doi.org/10.5423/PPJ.2009.25.2.165
  6. Chung, K. C., Kim, C. B., Kim, D. K. and Kim, B. J. 2006. Isolation of antagonistic bacteria against major diseases in Panax ginseng C. A. Meyer. Korean J. Med. Crop Sci. 14:202-205.
  7. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rubb, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  8. Hedin, P. A. 1982. New concepts and trends in pesticide chemistry. J. Agric. Food Chem. 30:201-215. https://doi.org/10.1021/jf00110a001
  9. Hong, S. J., Park, J. H., Kim, Y. K., Jee, H. J., Han, E. J., Shim, C. K., Kim, M. J., Kim, J. H. and Kim, S. H. 2012. Study on the control of leaf mold, powdery mildew and gray mold for organic tomato cultivation. Korean J. Organic Agric. 20:655-668. https://doi.org/10.11625/KJOA.2012.20.4.655
  10. Kim, H. J., Kim, J. H., Oh, H. J. and Shin, C. S. 2002a. Morphology control of Monascus cells and scale-up of pigment fermentation. Process Biochem. 38:649-655. https://doi.org/10.1016/S0032-9592(02)00095-X
  11. Kim, H. J., Kim, Y. H., Roh, Y. H., Seong, B. L. and Shin, C. S. 2005. Optimization of enterokinase fermentation using a recombinant Saccharomyces cerevisiae. Process Biochem. 40:717-722. https://doi.org/10.1016/j.procbio.2004.01.055
  12. Kim, J. C., Choi, G. J., Kim, H. J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2002b. Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant Pathol. J. 18:102-105. https://doi.org/10.5423/PPJ.2002.18.2.102
  13. Kim, J. H., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S. W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
  14. Kim, T. S., Ko, M. J., Lee, S. W., Han, J. H., Park, K. S. and Park, J. W. 2012. Effect of microbial agent on control of tomato gray mold and powdery mildew. Korean J. Pestic. Sci. 16:364-368. https://doi.org/10.7585/kjps.2012.16.4.364
  15. Kim, Y. S., Song, J. G., Lee, I. K., Yeo, W. H. and Yun, B. S. 2013. Bacillus sp. BS061 suppresses powdery mildew and gray mold. Microbiology 41:108-111.
  16. Le Dang, Q., Shin, T. S., Park, M. S., Choi, Y. H., Choi, G. J., Jang, K. S., Kim, I. S. and Kim, J. C. 2014. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 62:3363-3370. https://doi.org/10.1021/jf500361e
  17. Lee, S. G., Ahn, Y. J., Park, J. D., Kim, J. C., Cho, K. Y. and Lee, H. S. 2001. Fungicidal activity of 46 plant extracts against rice leaf blast, rice sheath blight, tomato late blight, cucumber gray mold, barley powdery mildew and wheat leaf rust. Korean J. Pestic. Sci. 5:18-25.
  18. Lee, S. K., Shon, H. B., Kim, G. G. and Chung, Y. R. 2006. Enhancement of biological control of Botrytis cinerea on cucumber by foliar sprays and bed potting mixes of Trichoderma harzianum YC459 and its application on tomato in the greenhouse. Plant Pathol. J. 22:283-288. https://doi.org/10.5423/PPJ.2006.22.3.283
  19. Li, X., Han, J. S., Jin, X., Yin, D. and Choi, J. E. 2008. Control of alternaria leaf blight of ginseng by microbial agent and fungicides. Res. Plant Dis. 14:102-106. https://doi.org/10.5423/RPD.2008.14.2.102
  20. Moyano, C., Gomez, V. and Melgarejo, P. 2004. Resistance to pyrimethanil and other fungicides in Botrytis cinerea populations collected on vegetable crops in spain. J. Phytopathol. 152:484-490. https://doi.org/10.1111/j.1439-0434.2004.00880.x
  21. Oliveira, D. G., Pauli, G., Mascarin, G. M. and Delalibera, I. 2015. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. J. Microbiol. Methods 119:44-52. https://doi.org/10.1016/j.mimet.2015.09.021
  22. Papavizas, G. C., Dunn, M. T., Lewis, J. A. and Beagle-Ristaino, J. 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171-1175. https://doi.org/10.1094/Phyto-74-1171
  23. Paulitz, T. C. and Belanger, R. R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39:103-133. https://doi.org/10.1146/annurev.phyto.39.1.103
  24. Qu, H., Zhao, L., Zhao, F., Liu, Y. and Yang, Z. 2016. Biocontrol of gray mold decay in pear by Bacillus amyloliquefaciens strain BA3 and its effect on postharvest quality parameters. Polish J. Microbiol. 65:171-176. https://doi.org/10.5604/17331331.1204476
  25. Wang, Y. F., Yu, T., Xia, J. D., Yu, D. S., Wang, J. and Zheng, X. D. 2010. Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenu. Biol. Control 53:178-182. https://doi.org/10.1016/j.biocontrol.2010.01.002
  26. Williamson, B., Tudzynski, B., Tudzynski, P. and Van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:564-580.
  27. Yang, H. J., Jeong, S. J., Jeong, S. Y. and Jeong, D. Y. 2014. Screening of antagonistic bacteria having antifungal activity against various phytopathogens. Korean J. Mycol. 42:333-340. https://doi.org/10.4489/KJM.2014.42.4.333
  28. Zhao, J., Li, J. and Kong, F. 2003. Biocontrol activity against Botrytis cinerea by Bacillus subtilis 728 isolated from marine environment. Ann. Microbiol. 53:29-35.