DOI QR코드

DOI QR Code

Potential Reasons for Prevalence of Fusarium Wilt in Oriental Melon in Korea

  • Seo, Yunhee (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Young Ho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.02.02
  • Accepted : 2017.03.28
  • Published : 2017.06.01

Abstract

This study aims to examine the potential reasons for the current prevalence of the fusarium wilt in the oriental melon. Twenty-seven Fusarium isolates obtained from oriental melon greenhouses in 2010-2011 were identified morphologically and by analysis of elongation factor-1 alpha gene (EF-$1{\alpha}$) and internal transcribed spacer (ITS) rDNA sequences as 6 Fusarium species (8 isolates of F. oxysporum, 8 F. commune, 5 F. proliferatum, 3 F. equiseti, 2 F. delphinoides, and 1 F. andiyazi), which were classified as same into 6 EF-$1{\alpha}$ sequence-based phylogenetic clades. Pathogenicity of the Fusarium isolates on the oriental melon was highest in F. proliferatum, next in F. oxysporum and F. andiyazi, and lowest in the other Fusarium species tested, suggesting F. proliferatum and F. oxysporum were major pathogens of the oriental melon, inducing stem rots and vascular wilts, respectively. Oriental melon and watermelon were more susceptible to F. oxysporum than shintosa and cucumber; and cucumber was most, oriental melon and watermelon, medially, and shintosa was least susceptible to F. proliferatum, whose virulence varied among and within their phylogenetic subclades. Severe root-knot galls were formed on all the crops infected with Meloidogyne incognita; however, little indication of vascular wilts or stem and/or root rots was shown by the nematode infection. These results suggest the current fungal disease in the oriental melon may be rarely due to virulence changes of the fusarium wilt pathogen and the direct cause of the severe root-knot nematode infection, but may be potentially from other Fusarium pathogen infection that produces seemingly wilting caused by severe stem rotting.

Keywords

References

  1. Agrios, G. N. 2004. Plant pathology. 5th ed. Academic Press, San Diego, CA, USA. 922 pp.
  2. Armstrong, J. M., Jatala, P. and Jensen, H. J. 1976. Bibliography of nematode interactions with other organisms in plant disease complexes. Station Bulletin 623, Agricultural Experiment Station, Oregon State University, Corvallis, OR, USA.
  3. Atkinson, G. F. 1892. Some diseases of cotton. Alabama Polytech. Inst. Agric. Exp. Stn. Bull. 41:61-65.
  4. Baker, K. R. 1985. Nematode extractions and bioassays. In: An advanced treatise on meloidogyne. Vol. II. Methodology, eds. by K. R. Baker, C. C. Carter and J. N. Sasser, pp. 19-35. Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA.
  5. Banihashemi, Z. and deZeeuw, D. J. 1975. The behavior of Fusarium oxysporum f. sp. melonis in the presence and absence of host plants. Phytopathology 65:1212-1217. https://doi.org/10.1094/Phyto-65-1212
  6. Bletsos, F. A. 2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. J. Phytopathol. 153:155-161. https://doi.org/10.1111/j.1439-0434.2005.00945.x
  7. Byeon, I. S., Suh, S. Y., Lee, Y. S. and Chung, J. B. 2014. Effect of double-cropping systems on nematode population in plastic film house soils of oriental melon cultivation. Korean J. Environ. Agric. 33:17-23 (in Korean). https://doi.org/10.5338/KJEA.2014.33.1.17
  8. Cafri, D., Katan, J. and Katan, T. 2005. Cross-pathogenicity between formae speciales of Fusarium oxysporum, the pathogens of cucumber and melon. J. Phytopathol. 153:615-622. https://doi.org/10.1111/j.1439-0434.2005.01029.x
  9. Chehri, K., Salleh, B., Yli-Mattila, T., Reddy, K. R. and Abbasi, S. 2011. Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran. Saudi J. Biol. Sci. 18:341-351. https://doi.org/10.1016/j.sjbs.2011.01.007
  10. Chen, L., Yang, X., Raza, W., Li, J., Liu, Y., Qiu, M. and Shen, Q. 2011. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl. Microbiol. Biotechnol. 89:1653-1663. https://doi.org/10.1007/s00253-010-2948-x
  11. Cho, M. R., Lee, B. C., Kim, D. S., Jeon, H. Y., Yiem, M. S. and Lee, J. O. 2000. Distribution of plant-parasitic nematodes in fruit vegetable production areas in Korea and identification of root-knot nematodes by enzyme phenotypes. Korean J. Appl. Entomol. 39:123-129.
  12. da Silva, F. P., Vechiato, M. H. and Harakava, R. 2014. EF-$1{\alpha}$ gene and IGS rDNA sequencing of Fusarium oxysporum f. sp. vasinfectum and F. oxysporum f. sp. phaseoli reveals polyphyletic origin of strains. Trop. Plant Pathol. 39:64-73. https://doi.org/10.1590/S1982-56762014000100008
  13. Fisher, N. L., Burgess, L. W., Toussoun, T. A. and Nelson, P. E. 1982. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72:151-153. https://doi.org/10.1094/Phyto-72-151
  14. Freeman, S., Zveibil, A., Vintal, H. and Maymon, M. 2002. Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology 92:164-168. https://doi.org/10.1094/PHYTO.2002.92.2.164
  15. Geiser, D. M., del Mar Jimenez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A. and O'Donnell, K. 2004. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 110:473-479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  16. Gordon, T. R. and Martyn, R. D. 1997. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 35:111-128. https://doi.org/10.1146/annurev.phyto.35.1.111
  17. Kim, D. G. 2001a. Distribution and population dynamics of Meloidogyne arenaria on oriental melon (Cucumis melo L.) under greenhouse conditions in Korea. Russian J. Nematol. 9:61-68.
  18. Kim, D. G. 2001b. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Dis. 7:69-79 (in Korean).
  19. Kim, D. G. and Choi, S. K. 2001. Effects of incorporation method of nematicides on reproduction of Meloidogyne arenaria. Korean J. Appl. Entomol. 40:89-95 (in Korean).
  20. Kim, D. G., Kim, S. H. and Lee, J. H. 2005. Observation of root-knot nematodes in the root gall formed on oriental melon. Plant Pathol. J. 21:73-76. https://doi.org/10.5423/PPJ.2005.21.1.073
  21. Kim, D. G. and Yeon, I. K. 2001. Development of Meloidogyne arenaria on oriental melon (Cucumis melo L.) in relation to degree-day accumulation under greenhouse conditions. Plant Pathol. J. 17:159-163.
  22. Kim, J. W. and Kim, H. J. 2004. Fusarium fruit rot of postharvest oriental melon (Cucumis melo L. var. makuwa Mak.) caused by Fusarium spp. Res. Plant Dis. 10:260-267 (in Korean). https://doi.org/10.5423/RPD.2004.10.4.260
  23. Kinloch, R. A. and Hinson, K. 1972. The Florida program for evaluating soybean (Glycine max (L.) Merr.) genotypes for susceptibility to root-knot nematode disease. Proc. Soil Crop Sci. Fla. 32:173-176.
  24. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8:114-125.
  25. Kornerup, A. and Wanscher, J. H. 1978. Methuen handbook of colour. 3rd ed. Methuen Publishing, London, UK.
  26. [KSPP] Korean Society of Plant Pathology. 2009. List of plant diseases in Korea. 5th ed. KSPP, Suwon, Korea.
  27. Kwon, T. Y., Jung, K. C., Sim, Y. G., Choi, B. S. and Park, S. D. 1998. Cultural and chemical control of root-knot nematodes, Meloidogyne sp. on oriental melon in plastic film house. RDA J. Crop Prot. 40:96-101.
  28. Lee, J. M. 1994. Cultivation of grafted vegetables I: current status, grafting methods, and benefits. HortScience 29:235-239.
  29. Lee, J. M. and Oda, M. 2003. Grafting of herbaceous vegetable and ornamental crops. Hortic. Rev. 28:61-124.
  30. Lee, W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Korean J. Hortic. Sci. Technol. 33:70-82. https://doi.org/10.7235/hort.2015.14101
  31. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA.
  32. [MAFRA] Ministry of Agriculture, Food, and Rural Affairs, Republic of Korea. 2015. Agriculture, food, and rural affairs statistical yearbook, 2015. MAFRA, Sejong, Korea.
  33. Marasas, W. F. O., Rheeder, J. P., Lamprecht, S. C., Zeller, K. A. and Leslie, J. F. 2001. Fusarium andiyazi sp. nov., a new species from sorghum. Mycologia 93:1203-1210. https://doi.org/10.2307/3761681
  34. Matsumoto, Y., Ogawara, T., Miyagi, M., Watanabe, N. and Kuboyama, T. 2011. Response of wild Cucumis species to inoculation with Fusarium oxysporum f. sp. melonis race 1, 2y. J. Jpn. Soc. Hortic. Sci. 80:414-419. https://doi.org/10.2503/jjshs1.80.414
  35. O'Donnel, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116. https://doi.org/10.1006/mpev.1996.0376
  36. Owen, J. H. 1955. Fusarium wilt of cucumber. Phytopathology 45:435-439.
  37. Palmero, D., Iglesias, C., de Cara, M., Lomas, T., Santos, M. and Tello, J. C. 2009. Species of Fusarium isolated from river and sea water of southeastern Spain and pathogenicity on four plant species. Plant Dis. 93:377-385. https://doi.org/10.1094/PDIS-93-4-0377
  38. Park, S. D., Kwon, T. Y., Choi, B. S., Lee, W. S. and Choi, Y. E. 1995. Studies on integrated control against root-knot nematode of fruit vegetable (oriental melon and cucumber) in vinyl house. Korean J. Appl. Entomol. 34:75-81 (in Korean).
  39. Rhoades, H. L. 1976. Effects of Indigofera hirsuta on Belonolaimus longicaudatus, Meloidogyne incognita, and M. javanica and subsequent crop yield. Plant Dis. Report. 60:384-386.
  40. Roberts, P. A., Dalmasso, A., Cap, G. B. and Castagnone-Sereno, P. 1990. Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. J. Nematol. 22:585-589.
  41. Sardanelli, S., Krusberg, L. R. and Kantzes, J. G. 1983. Plant parasitic nematodes in Maryland. Fact Sheet 381. University of Maryland Extension, University of Maryland, College Park, MD, USA.
  42. Schroers, H. J., O'Donnell, K., Lamprecht, S. C., Kammeyer, P. L., Johnson, S., Sutton, D. A., Rinaldi, M. G., Geiser, D. M. and Summerbell, R. C. 2009. Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 101:44-70. https://doi.org/10.3852/08-002
  43. Seo, Y., Kim, Y. S., Park, Y. and Kim, Y. H. 2015. Comparisons of pathological responses in carrot to root-knot nematodes. Plant Pathol. J. 31:441-445. https://doi.org/10.5423/PPJ.NT.06.2015.0115
  44. Seo, Y., Park, J., Kim, Y. S., Park, Y. and Kim, Y. H. 2014. Screening and histopathological characterization of Korean carrot lines for resistance to the root-knot nematode Meloidogyne incognita. Plant Pathol. J. 30:75-81. https://doi.org/10.5423/PPJ.OA.08.2013.0082
  45. Skovgaard, K., Rosendahl, S., O'Donnell, K. and Nirenberg, H. I. 2003. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95:630-636. https://doi.org/10.1080/15572536.2004.11833067
  46. Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2008. Effects of seed treatment with rhizobacterium, Paenibacillus species on management of root-knot nematode-Fusarium wilt fungus disease complex in tomato plants. Russ. J. Nematol. 16:97-105.
  47. Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107:524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  48. Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture Fisheries and Food, Her Majesty's Stationery Office, London, UK.
  49. Sumner, D. R. and Johnson, A. W. 1973. Effect of root-knot nematodes on Fusarium wilt of watermelon. Phytopathology 63:857-861. https://doi.org/10.1094/Phyto-63-857
  50. Swathi, J., Sowjanya, K. M., Narendra, K. and Satya, A. K. 2013. Bioactivity assay of an isolated marine Fusarium sp. Int. J. Bio-Sci. Bio-Technol. 5:179-186. https://doi.org/10.14257/ijbsbt.2013.5.5.19
  51. Thompson, D. and Henry, R. 1995. Single-step protocol for preparation of plant tissue for analysis by PCR. Biotechniques 19:394-397, 400.
  52. Waalwijk, C., de Koning, J. R. A., Baayen, R. P. and Gams, W. 1996. Discordant groupings of Fusarium spp. from sections Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycologia 88:361-368. https://doi.org/10.2307/3760877
  53. Wachter, J. and Hill, S. 2016. Positive selection pressure drives variation on the surface-exposed variable proteins of the pathogenic Neisseria. PLoS One 11:e0161348. https://doi.org/10.1371/journal.pone.0161348
  54. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, 315-322. Academic Press, San Diego, CA, USA.
  55. Zhou, X. G. and Everts, K. L. 2007. Characterization of a regional population of Fusarium oxysporum f. sp. niveum by race, cross pathogenicity, and vegetative compatibility. Phytopathology 97:461-469. https://doi.org/10.1094/PHYTO-97-4-0461

Cited by

  1. Combating Fusarium Infection Using Bacillus-Based Antimicrobials vol.5, pp.4, 2017, https://doi.org/10.3390/microorganisms5040075