DOI QR코드

DOI QR Code

Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11

생물적 방제균 Bacillus amyloliquefaciens LM11의 유래 생물계면활성물질과 항균활성과의 상관관계

  • Kang, Beom Ryong (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Yong Hwan (College of Life and Resource Science, Dankook University) ;
  • Nam, Hyo Song (Bio Control Research Center, Jeonnam Bioindustry Foundation) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • 강범용 (전남대학교 친환경농업연구소) ;
  • 김용환 (단국대학교 식량생명공학과) ;
  • 남효송 (전남생물산업진흥원 생물방제연구센터) ;
  • 김영철 (전남대학교 친환경농업연구소)
  • Received : 2017.02.02
  • Accepted : 2017.02.21
  • Published : 2017.06.30

Abstract

Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761) with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951-0.977). Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.

장수풍뎅이 유충의 장내세포에서 분리한 Bacillus amyloliquefaciens LM11은 surfactin, iturin, fengycin 같은 biosurfactants lipopeptide를 생산하여 식물병원성 곰팡이의 성장을 강하게 억제하였다. LM11균주 성장단계에 따라 biosurfactant 생산과 surface tension은 상당히 유의한 차이가 있었다. 항균 물질인 surfactin, iturin, fengycin의 생합성 유전자는 정지기에 도달하면서 집중적으로 발현되었고 그 생산량도 높았다. 또한 LM11균주를 제거한 배양 상등액 함량의 농도에 따라 고추 탄저병원균의 포자발아와 높은 부의 상관관계가 있었다(R=0.761, P<0.001). 식물병원성 곰팡이의 균사 생장억제를 위한 최소 surface tension 수준은 38.5 mN/m였다(R=0.951-0.977, P<0.001). 본 연구 결과는 B. amyloliquefaciens LM11의 biosurfactant가 식물병에 대한 생물학적 방제에 중요한 항진균 대사물질로 작용하며, 배양액의 surface tension 측정은 생물학적 방제제의 최적 사용을 위한 기초 지표로 사용될 수 있음을 보여 주었다.

Keywords

References

  1. Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Ahn, J., Park, M. S., Kim, S. K., Choi, G. J., Jang, K. S., Choi, Y. H., Choi, J. E., Kim, I. S. and Kim, J. C. 2009. Suppression effect of gray mold and late blight on tomato plants by rhamnolipid B. Res. Plant Dis. 15: 222-229. https://doi.org/10.5423/RPD.2009.15.3.222
  3. Arima, K., Kakinuma, A. and Tamura, G. 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488-494. https://doi.org/10.1016/0006-291X(68)90503-2
  4. Arrebola, E., Jacobs, R. and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
  5. Bodour, A. A. and Miller-Maier, R. M. 1998. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32: 273-280. https://doi.org/10.1016/S0167-7012(98)00031-1
  6. Cao, X. H., Liao, Z. Y., Wang, C. L., Yang, W. Y. and Lu, M. F. 2009. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz. J. Microbiol. 40: 373-379. https://doi.org/10.1590/S1517-83822009000200030
  7. Chitarra, G. S., Breeuwer, P., Nout, M. J., van Aelst, A. C., Rombouts, F. M. and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-166. https://doi.org/10.1046/j.1365-2672.2003.01819.x
  8. Chopineau, J., McCafferty, F. D., Therisod, M. and Klibanov, A. M. 1988. Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol. Bioeng. 31: 208-214. https://doi.org/10.1002/bit.260310305
  9. Chowdhury, S. P., Hartmann, A., Gao, X. and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front. Microbiol. 6: 780.
  10. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123. https://doi.org/10.1007/s00253-008-1520-4
  11. Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V. and Annapurna, K. 2010. Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant Growth and Health Promoting Bacteria, ed. by D. K. Maheshwari, pp. 333-364. Springer, Berlin, Germany.
  12. Huszcza, E. and Burczyk, B. 2003. Biosurfactant production by Bacillus coagulans. J. Surfact. Deterg. 6: 61-64. https://doi.org/10.1007/s11743-003-0249-2
  13. Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474.
  14. Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y. T. 2010. Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20: 138-145.
  15. Kim, S. H., Lim, E. J., Lee, S. O., Lee, J. D. and Lee, T. H. 2000. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 31: 249-253. https://doi.org/10.1042/BA19990111
  16. Kolter, R. and Moreno, F. 1992. Genetics of ribosomally synthesized peptide antibiotics. Annu. Rev. Microbiol. 46: 141-163. https://doi.org/10.1146/annurev.mi.46.100192.001041
  17. Kumar, N. P., Swapna, T. H., Sathi Reddy, K., Archana, K., Nageshwar, L., Nalini, S., Khan, M. Y. and Hameeda, B. 2016. Draft genome sequence of Bacillus amyloliquefaciens strain RHNK22, isolated from rhizosphere with biosurfactant (surfactin, iturin, and fengycin) and antifungal activity. Genome Announc. 4: e01682-15.
  18. Lee, S. C., Jung, Y. J., Yoo, J. S., Cho, Y. S., Cha, I. H. and Choi, Y. L. 2002. Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J. Life Sci. 12: 745-751. https://doi.org/10.5352/JLS.2002.12.6.745
  19. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108. https://doi.org/10.1111/j.1365-2672.1995.tb02829.x
  20. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  21. Marahiel, M. A., Nakano, M. M. and Zuber, P. 1993. Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 7: 631-636. https://doi.org/10.1111/j.1365-2958.1993.tb01154.x
  22. Mnif, I., Grau-Campistany, A., Coronel-León, J., Hammami, I., Triki, M. A., Manresa, A. and Ghribi, D. 2016. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. Int. 23: 6690-6699. https://doi.org/10.1007/s11356-015-5826-3
  23. Mnif, I., Hammami, I., Triki, M. A., Azabou, M. C., Ellouze-Chaabouni, S. and Ghribi, D. 2015. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ. Sci. Pollut. Res. Int. 22: 18137-18147. https://doi.org/10.1007/s11356-015-5005-6
  24. Mochizuki, M., Yamamoto, S., Aoki, Y. and Suzuki, S. 2012. Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci. Technol. 22: 697-709. https://doi.org/10.1080/09583157.2012.679644
  25. Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270: 1-11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
  26. Mota, M. S., Gomes, C. B., Souza Júnior, I. T. and Moura, A. B. 2017. Bacterial selection for biological control of plant disease: criterion determination and validation. Braz. J. Microbiol. 48: 62-70. https://doi.org/10.1016/j.bjm.2016.09.003
  27. Mulligan, C. N., Mahmourides, G. and Gibbs, B. F. 1989. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J. Biotechnol. 12: 199-209. https://doi.org/10.1016/0168-1656(89)90041-2
  28. Nam, H. S., Yang, H. J., Oh, B. J., Anderson, A. J. and Kim, Y. C. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J. 32: 273-280. https://doi.org/10.5423/PPJ.NT.12.2015.0274
  29. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  30. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  31. Park, K., Dutta, S., Park, Y. S., Sang, M. K. and Moon, S. S. 2016. Induction of systemic resistance and tolerance against biotic and abiotic stress in chinese cabbage by cyclic peptides producing Bacillus vallismortis strain BS07M. In: Recent Trends in PGPR Research for Sustainable Crop Productivity, eds. by R. Z. Sayyed, M. S. Reddy and A. Al-Turki, pp. 200-205. Scientific Publishers, New Delhi, India.
  32. Peypoux, F., Bonmatin, J. M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563. https://doi.org/10.1007/s002530051432
  33. Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi‐purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558. https://doi.org/10.1111/mpp.12209
  34. Razafindralambo, H., Paquot, M., Hbid, C., Jacques, P., Destain, J. and Thonart, P. 1993. Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J. Chromatogr. 639: 81-85. https://doi.org/10.1016/0021-9673(93)83091-6
  35. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20: 430-440. https://doi.org/10.1094/MPMI-20-4-0430
  36. Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.
  37. Sieber, S. A. and Marahiel, M. A. 2003. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J. Bacteriol. 185: 7036-7043. https://doi.org/10.1128/JB.185.24.7036-7043.2003
  38. Singh, A. K., Rautela, R. and Cameotra, S. S. 2014. Substrate dependent in vitro antifungal activity of Bacillus sp strain AR2. Microb. Cell Fact. 13: 67. https://doi.org/10.1186/1475-2859-13-67
  39. Slepecky, R. A. and Hemphill, H. E. 2006. The genus Bacillus: nonmedical. In: The Prokaryotes, Vol. 4, ed. by M. Dworkin, 530-562. Springer, New York, NY, USA.
  40. Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M. and Garcia, A. F. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin‐like compounds. J. Appl. Microbiol. 97: 1247-1256. https://doi.org/10.1111/j.1365-2672.2004.02408.x
  41. Stanghellini, M. E. and Miller, R. M. 1997. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81: 4-12. https://doi.org/10.1094/PDIS.1997.81.1.4
  42. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  43. Tendulkar, S. R., Saikumari, Y. K., Patel, V., Raghotama, S., Munshi, T. K., Balaram, P. and Chattoo, B. B. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103: 2331-2339. https://doi.org/10.1111/j.1365-2672.2007.03501.x
  44. Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96: 1151-1160. https://doi.org/10.1111/j.1365-2672.2004.02252.x
  45. Varadavenkatesan, T. and Murty, V. R. 2013. Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery. ISRN Microbiol. 2013: 621519.
  46. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. https://doi.org/10.1023/A:1026037216893
  47. Yamamoto, S., Shiraishi, S. and Suzuki, S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13‐3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 60: 379-386. https://doi.org/10.1111/lam.12382
  48. Yang, H. J. 2015. Biological control activities of an insect endosymbiotic bacterium Bacillus amyloliquefaciens KB3. M.S. thesis. Chonnam National University, Gwangju, Korea.
  49. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  50. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5