DOI QR코드

DOI QR Code

Plant-derived Antibacterial Metabolites Suppressing Tomato Bacterial Wilt Caused by Ralstonia solanacearum

  • Vu, Thuy Thu (Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology) ;
  • Choi, Gyung Ja (Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology) ;
  • Kim, Jin-Cheol (Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2017.02.13
  • 심사 : 2017.03.01
  • 발행 : 2017.06.30

초록

Ralstonia solanacearum species complex (RSSC) causes bacterial wilt, and it is one of the most important soil-borne plant pathogenic bacteria. RSSC has a large host range of more than 50 botanical families, which represent more than 200 plant species, including tomato. It is difficult to control bacterial wilt due to following reasons: the bacterial wilt pathogen can grow inside the plant tissue, and it can also survive in soil for a long period; moreover, it has a wide host range and biological diversity. In most previous studies, scientists have focused on developing biological control agents, such as antagonistic microorganisms and botanical materials. However, biocontrol attempts are not successful. Plant-derived metabolites and extracts have been promising candidates to environmentally friendly control bacterial wilt diseases. Therefore, we review the plant extracts, essential oils, and secondary metabolites that show potent in vivo antibacterial activities (in potted plants or in field) against tomato bacterial wilt, which is caused by RSSC.

키워드

참고문헌

  1. Alemu, D., Lemessa, F., Wakjira, M. and Berecha, G. 2013. Antibacterial activity of some invasive alien species extracts against tomato (Lycopersicon esculentum Mill) bacterial wilt caused by Ralstonia solanacearum (Smith). Plant Pathol. J. 12: 61-70. https://doi.org/10.3923/ppj.2013.61.70
  2. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19: 535-544. https://doi.org/10.1016/j.tree.2004.07.021
  3. Bai, W., Kong, F., Lin, Y. and Zhang, C. 2016. Extract of Syringa oblata: a new biocontrol agent against tobacco bacterial wilt caused by Ralstonia solanacearum. Pestic. Biochem. Physiol. 134: 79-83. https://doi.org/10.1016/j.pestbp.2016.04.002
  4. Bhagat, S., Birah, A., Kumar, R., Yadav, M. S. and Chattopadhyay, C. 2014. Plant disease management: prospects of pesticides of plant origin. In: Advances in Plant Biopesticides, ed. by D. Singh, pp. 119-129. Springer, New Delhi, India.
  5. Bourgaud, F., Gravot, A., Milesi, S. and Gontier, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Sci. 161: 839-851. https://doi.org/10.1016/S0168-9452(01)00490-3
  6. Cardoso, S. C., Soares, A. C. F., Brito, A. D. S., Laranjeira, F. F., Ledo, C. A. S. and dos Santos, A. P. 2006. Control of tomato bacterial wilt through the incorporation of aerial part of pigeon pea and crotalaria to soil. Summa Phytopathol. 32: 27-33. https://doi.org/10.1590/S0100-54052006000100004
  7. Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nakbi, A. B., Rouabhia, M., Mahdouani, K. and Bakhrouf, A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res. 21: 501-506. https://doi.org/10.1002/ptr.2124
  8. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R. and Guo, J. H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15: 848-864. https://doi.org/10.1111/j.1462-2920.2012.02860.x
  9. Deberdt, P., Perrin, B., Coranson-Beaudu, R., Duyck, P. F. and Wicker, E. 2012. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 96: 687-692. https://doi.org/10.1094/PDIS-07-11-0601
  10. Dubey, N. K., Shukla, R., Kumar, A., Singh, P. and Prakash, B. 2011. Global scenario on the application of natural products in integrated pest management programmes. In: Natural Products in Plant Pest Management, ed. by N. K. Dubey, pp. 1-20. CAB International, Oxfordshire, UK.
  11. Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. In: Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 9-28. APS Press, St. Paul, MN, USA.
  12. El-Wakeil, N. E. 2013. Botanical pesticides and their mode of action. Gesunde Pflanzen 65: 125-149. https://doi.org/10.1007/s10343-013-0308-3
  13. Fan, W. W., Yuan, G. Q. and Lin, W. 2014. Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum. Australas. Plant Pathol. 43: 1-7. https://doi.org/10.1007/s13313-013-0234-y
  14. Feng, C. T., Su, H. J., Chen, C. T., Ho, W. C., Tsou, Y. R. and Chern, L. L. 2012. Inhibitory effects of Chinese medicinal herbs on plantpathogenic bacteria and identification of the active components from gallnuts of Chinese sumac. Plant Dis. 96: 1193-1197. https://doi.org/10.1094/PDIS-08-11-0673-RE
  15. Gaitonde, S. S. and Ramesh, R. 2016. Screening plant products for Ralstonia solanacearum inhibition and characterization of antibacterial compounds in Garcinia indica and Tamarindus indica. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. Online publication. doi: 10.1007/s40011-016-0755-6.
  16. Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187: 920-928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
  17. Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Kohl, J., Marrone, P., Morin, L. and Stewart, A. 2012. Have biopesticides come of age? Trends Biotechnol. 30: 250-258. https://doi.org/10.1016/j.tibtech.2012.01.003
  18. Gopalakrishnan, C., Artal, R. B. and Thippeswamy, B. 2014. In vitro evaluation of botanicals against Ralstonia solanacearum E.F. Smith (Yabbuchi et al., 1995). Pest Manag. Hortic. Ecosyst. 20: 69-74.
  19. Gurjar, M. S., Ali, S., Akhtar, M. and Singh, K. S. 2012. Efficacy of plant extracts in plant disease management. Agric. Sci. 3: 425-433.
  20. Hamidpour, R., Hamidpour, M., Hamidpour, S. and Shahlari, M. 2015. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J. Tradit. Complement. Med. 5: 66-70. https://doi.org/10.1016/j.jtcme.2014.11.008
  21. Isman, M. B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51: 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
  22. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89: 497-500. https://doi.org/10.1094/PD-89-0497
  23. Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
  24. Li, C. M. and Yu, J. P. 2015. Chemical composition, antimicrobial activity and mechanism of action of essential oil from the leaves of Macleaya cordata (Willd.) R. Br. J. Food Saf. 35: 227-236. https://doi.org/10.1111/jfs.12175
  25. Li, L., Feng, X., Tang, M., Hao, W., Han, Y., Zhang, G. and Wan, S. 2014. Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Microbiol. Res. 169: 522-526. https://doi.org/10.1016/j.micres.2013.12.003
  26. Li, S., Yu, Y., Chen, J., Guo, B., Yang, L. and Ding, W. 2016. Evaluation of the antibacterial effects and mechanism of action of protocatechualdehyde against Ralstonia solanacearum. Molecules 21: E754. https://doi.org/10.3390/molecules21060754
  27. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  28. Matsushita, Y., Hwang, Y. H., Sugamoto, K. and Matsui, T. 2006. Antimicrobial activity of heartwood components of sugi (Cryptomeria japonica) against several fungi and bacteria. J. Wood Sci. 52: 552-556. https://doi.org/10.1007/s10086-005-0793-9
  29. Mohumad Tahat, M. and Sijam, K. 2010. Ralstonia solanacearum: the bacterial wilt causal agent. Asian J. Plant Sci. 9: 385-393. https://doi.org/10.3923/ajps.2010.385.393
  30. Murthy, K. N., Soumya, K. and Srinivas, C. 2015a. Antibacterial activity of Curcuma longa (turmeric) plant extracts against bacterial wilt of tomato caused by Ralstonia solanacearum. IJSR 4: 2136-2141.
  31. Murthy, K. N., Uzma, F., Soumya, K. and Srinivas, C. 2015b. Antibacterial activity of neem (Azadirachta indica) plant extracts against bacterial wilt of tomato caused by Ralstonia solanacearum. IJRAS 2: 217-223.
  32. Olivier, A. R., Uda, Y., Bang, S. W., Honjo, H., Fukami, M. and Fukui, R. 2006. Dried residues of specific cruciferous plants incorporated into soil can suppress the growth of Ralstonia solanacearum, independent of glucosinolate content of the residues. Microbes Environ. 21: 216-226. https://doi.org/10.1264/jsme2.21.216
  33. Opiyo, S. A., Manguro, L. O. A., Okinda-Owuor, P., Ateka, E. M. and Lemmen, P. 2011. $7{\alpha}$-Acetylugandensolide and antimicrobial properties of Warburgia ugandensis extracts and isolates against sweet potato pathogens. Phytochem. Lett. 4: 161-165. https://doi.org/10.1016/j.phytol.2011.02.007
  34. Pontes, N. C., Kronka, A. Z., Moraes, M. F. H., Nascimento, A. S. and Fujinawa, M. F. 2011. Incorporation of neem leaves into soil to control bacterial wilt of tomato. J. Plant Pathol. 93: 741-744.
  35. Pradhanang, P. M., Momol, M. T., Olson, S. M. and Jones, J. B. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427. https://doi.org/10.1094/PDIS.2003.87.4.423
  36. Pretorius, J. C. and van der Watt, E. 2011. Natural products from plants: commercial prospects in terms of antimicrobial, herbicidal and bio-stimulatory activities in an integrated pest management system. In: Natural Products in Plant Pest Management, ed. by N. K. Dubey, pp. 42-90. CAB International, Oxfordshire, UK.
  37. Ramsubhag, A., Lawrence, D., Cassie, D., Fraser, R., Umaharan, P., Prior, P. and Wicker, E. 2012. Wide genetic diversity of Ralstonia solanacearum strains affecting tomato in Trinidad, West Indies. Plant Pathol. 61: 844-857. https://doi.org/10.1111/j.1365-3059.2011.02572.x
  38. Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L. and Kappler, U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64: 3087-3103. https://doi.org/10.1099/ijs.0.066712-0
  39. Singh, S., Gautam, R. K., Singh, D. R., Sharma, T. V. R. S., Sakthivel, K. and Roy, S. D. 2015. Genetic approaches for mitigating losses caused by bacterial wilt of tomato in tropical islands. Eur. J. Plant Pathol. 143: 205-221. https://doi.org/10.1007/s10658-015-0690-z
  40. Sola, P., Mvumi, B. M., Ogendo, J. O., Mponda, O., Kamanula, J. F., Nyirenda, S. P., Belmain, S. R. and Stevenson, P. C. 2014. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. Food Secur. 6: 369-384. https://doi.org/10.1007/s12571-014-0343-7
  41. Tanwar, R. S., Dureja, P. and Rathore, H. S. 2012. Section VIII biopesticides. In: Pesticides: Evaluation of Environmental Pollution, eds. by H. S. Rathore and L. M. L. Nollet, pp. 595-597. CRC Press, Boca Raton, FL, USA.
  42. Terada, T. 1993. TC-21 soilless culture system: the development of a new soilless system using substrate with low pressure on environmental pollution. Agric. Bus. 8: 59-74.
  43. Uma, T., Mannam, S., Lahoti, J., Devi, K., Kale, R. D. and Bagyaraj, D. J. 2012. Biocidal activity of seed extracts of fruits against soil borne bacterial and fungal plant pathogens. J. Biopest. 5: 103-105.
  44. Vidaver, A. K. and Lambrecht, P. A. 2004. Bacteria as plant pathogens. Plant Health Instructor Online publication. doi: 10.1094/PHI-I-2004-0809-01.
  45. Vu, T. T., Kim, J. C., Choi, Y. H., Choi, G. J., Jang, K. S., Choi, T. H., Yoon, T. M. and Lee, S. W. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598. https://doi.org/10.1094/PDIS-04-13-0350-RE
  46. Yang, L., Ding, W., Xu, Y., Wu, D., Li, S., Chen, J. and Guo, B. 2016. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules 21: 468. https://doi.org/10.3390/molecules21040468
  47. Yu, J. Q. and Komada, H. 1999. Hinoki (Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root diseases of tomato. Sci. Hortic. 81: 13-24. https://doi.org/10.1016/S0304-4238(98)00262-3
  48. Yuan, G. Q., Li, Q. Q., Qin, J., Ye, Y. F. and Lin, W. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147. https://doi.org/10.1094/PDIS-03-11-0150-RE
  49. Yuliar, Nion, Y. A. and Toyota, K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30: 1-11. https://doi.org/10.1264/jsme2.ME14144
  50. Zhao, X., Mei, W., Gong, M., Zuo, W., Bai, H. and Dai, H. 2011. Antibacterial activity of the flavonoids from Dalbergia odorifera on Ralstonia solanacearum. Molecules 16: 9775-9782. https://doi.org/10.3390/molecules16129775