DOI QR코드

DOI QR Code

Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities

  • Barati, Mohammad Reza (Aerospace Engineering Department & Center of Excellence in Computational Aerospace, Amirkabir University of Technology)
  • 투고 : 2017.07.01
  • 심사 : 2017.08.18
  • 발행 : 2017.12.25

초록

Forced vibration behavior of porous metal foam nanoplates on elastic medium is studied via a 4-variable plate theory. Different porosity distributions called uniform, symmetric and asymmetric are considered. Nonlocal strain gradient theory (NSGT) containing two scale parameters is employed for size-dependent modeling of porous nanoplates. The present plate theory satisfies the shear deformation effect and it has lower field variables compared with first order plate theory. Hamilton's principle is employed to derive the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, dynamic loading, porosity distributions and porosity coefficient on dynamic deflection and resonance frequencies of metal foam nanoscale plates are examined.

키워드

참고문헌

  1. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  2. Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A, 123(5), 332. https://doi.org/10.1007/s00339-017-0908-3
  3. Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090
  4. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212. https://doi.org/10.1016/j.compstruct.2016.01.056
  5. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., Int. J., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347
  6. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  7. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052
  8. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025
  9. Ebrahimi, F and Barati, M.R. (2016), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
  10. Ebrahimi, F. and Barati, M.R. (2017a), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Thermal Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
  11. Ebrahimi, F. and Barati, M.R. (2017b), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Process., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021
  12. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a singlewalled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12.
  13. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  15. Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295.
  16. Javed, S., Viswanathan, K.K., Aziz, Z.A., Karthik, K. and Lee, J.H. (2016), "Vibration of antisymmetric angle-ply laminated plates under higher order shear theory", Steel Compos. Struct., Int. J., 22(6), 1281-1299. https://doi.org/10.12989/scs.2016.22.6.1281
  17. Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano Res., Int. J., 4(4), 251-264.
  18. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Computat. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
  19. Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  20. Li, L., Hu, Y. and Ling, L. (2016b), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Lowdimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
  21. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  22. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazi. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6
  23. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Computat. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
  24. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct, Int. J., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
  25. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  26. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089
  27. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  28. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
  29. Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388. https://doi.org/10.1007/s00339-017-1007-1
  30. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
  31. Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension: International J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019

피인용 문헌

  1. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2017, https://doi.org/10.12989/acc.2020.9.4.397
  2. Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams vol.5, pp.2, 2017, https://doi.org/10.12989/acd.2020.5.2.177
  3. Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.283
  4. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2017, https://doi.org/10.12989/anr.2021.10.1.025