DOI QR코드

DOI QR Code

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them

  • Kobayashi, Yoshio (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University) ;
  • Nakazawa, Hiroaki (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University) ;
  • Maeda, Takafumi (Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University) ;
  • Yasuda, Yusuke (Hitachi Research Laboratory, Hitachi Ltd.) ;
  • Morita, Toshiaki (Hitachi Research Laboratory, Hitachi Ltd.)
  • Received : 2016.11.14
  • Accepted : 2017.05.29
  • Published : 2017.12.25

Abstract

Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.

Keywords

Acknowledgement

Supported by : Hitachi, Ltd.

References

  1. Abtewa, M. and Selvaduray, G. (2000), "Lead-free solders in microelectronics", Mater. Sci. Eng., 27(5-6), 95-141. https://doi.org/10.1016/S0927-796X(00)00010-3
  2. Argueta-Figueroa, L., Morales-Luckie, R.A., Scougall-Vilchis, R. and Olea-Mejia, O.F. (2014), "Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials", Prog. Nat. Sci., 24(4), 321-328. https://doi.org/10.1016/j.pnsc.2014.07.002
  3. Bai, J.G., Zhang, Z.Z., Calata, J.N. and Lu, G.Q. (2006), "Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material", IEEE Trans. Compon. Pack. Technol., 29(3), 589-593. https://doi.org/10.1109/TCAPT.2005.853167
  4. Darwish, S.M., Al-Habdanb, S. and Al-Tamimia, A. (2000), "A knowledge-base for electronics soldering", J. Mater. Process. Technol., 97(1-3), 1-9. https://doi.org/10.1016/S0924-0136(99)00378-7
  5. Dickson, D., Liu, G., Li, C., Tachiev, G. and Cai, Y. (2012), "Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength", Sci. Total Environ., 419, 170-177. https://doi.org/10.1016/j.scitotenv.2012.01.012
  6. Dimic-Misic, K., Hummel, M., Paltakari, J., Sixta, H., Maloney, T. and Gane, P. (2015), "From colloidal spheres to nanofibrils: Extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression", J. Colloid Interf. Sci., 446, 31-43. https://doi.org/10.1016/j.jcis.2015.01.004
  7. Duarte, L.I., Viana, F., Ramos, A.S., Vieira, M.T., Leinenbach, C., Klotz, U.E. and Vieira, M.F. (2012), "Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers", J. Alloy. Compd., 536(S1), S424-S427. https://doi.org/10.1016/j.jallcom.2011.12.037
  8. Hashimoto, S., Werner, D. and Uwada, T. (2012), "Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication", J. Photochem. Photobiol. C, 13(1), 28-54. https://doi.org/10.1016/j.jphotochemrev.2012.01.001
  9. Ide, E., Angata, S., Hirose, A. and Kobayashi, K.F. (2005), "Metal-metal bonding process using Ag metalloorganic nanoparticles", Acta Mater., 53(8), 2385-2393. https://doi.org/10.1016/j.actamat.2005.01.047
  10. Ishizaki, T., Satoh, T., Kuno, A., Tane, A., Yanase, M., Osawa, F. and Yamada, Y. (2013), "Thermal characterizations of Cu nanoparticle joints for power semiconductor devices", Microelectron. Reliab., 53(9-11), 1543-1547. https://doi.org/10.1016/j.microrel.2013.07.042
  11. Ji, F., Xue, S., Lou, J., Lou, Y. and Wang, S. (2012), "Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals", Trans. Nonferrous Met. Soc. China, 22(2), 281-287. https://doi.org/10.1016/S1003-6326(11)61172-2
  12. Ji, H., Li, L. and Li, M. (2015), "Low-temperature joining of Fe-based amorphous foil with aluminum by ultrasonic-assisted soldering with Sn-based fillers", Mater. Design, 84, 254-260. https://doi.org/10.1016/j.matdes.2015.06.112
  13. Joshi, R.K. (2006), "pH and temperature dependence of particle size in $Pb_{1-x}Fe_xS $ nanoparticle films", Solid State Commun., 139(5), 201-204. https://doi.org/10.1016/j.ssc.2006.06.012
  14. Kikuchi, S., Nishimura, M., Suetsugu, K., Ikari, T. and Matsushige, K. (2001), "Strength of bonding interface in lead-free Sn alloy solders", Mater. Sci. Eng. A, 319-321, 475-479. https://doi.org/10.1016/S0921-5093(01)01031-0
  15. Kim, K.-S., Bang, J.-O. and Jung, S.-B. (2013), "Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics", Curr. Appl. Phys., 13(S1), S190-S194. https://doi.org/10.1016/j.cap.2013.01.031
  16. Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2011), "Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties", Solid State Sci., 13(3), 553-558. https://doi.org/10.1016/j.solidstatesciences.2010.12.025
  17. Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2012), "Metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution", Int. J. Adhes. Adhes., 33, 50-55. https://doi.org/10.1016/j.ijadhadh.2011.11.002
  18. Kobayashi, Y., Shirochi, T., Yasuda, Y. and Morita, T. (2013a), "Preparation of metallic copper nanoparticles by reduction of copper ions in aqueous solution and their metal-metal bonding properties", Int. J. Phys. Nat. Sci. Eng., 7(10), 150-153.
  19. Kobayashi, Y., Shirochi, T., Maeda, T., Yasuda, Y. and Morita, T. (2013b), "Microstructure of metallic copper nanoparticles/metallic disc interface in metal-metal bonding using them", Surf. Interf. Anal., 45(9), 1424-1428. https://doi.org/10.1002/sia.5299
  20. Kobayashi, Y., Abe, Y., Maeda, T., Yasuda, Y. and Morita, T. (2014), "A Metal-metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles", J. Mater. Res. Technol., 3(2), 114-121. https://doi.org/10.1016/j.jmrt.2013.12.003
  21. Kobayashi, Y., Maeda, T., Yasuda, Y. and Morita, T. (2016), "Metal-metal bonding process using cuprous oxide nanoparticles", J. Mater. Res. Technol., 5(4), 345-352. https://doi.org/10.1016/j.jmrt.2016.05.007
  22. Kotadia, H.R., Howes, P.D. and Mannan, S.H. (2014), "A review: On the development of low melting temperature Pb-free solders", Microelectron. Reliab., 54(6-7), 1253-1273. https://doi.org/10.1016/j.microrel.2014.02.025
  23. Lee, K.S. and Kwon, Y.-N. (2013), "Solid-state bonding between Al and Cu by vacuum hot pressing", Trans. Nonferrous Met. Soc. China, 23(2), 341-346. https://doi.org/10.1016/S1003-6326(13)62467-X
  24. Lu, G.-Q., Yan, C., Mei, Y. and Li, X. (2015), "Dependence of electrochemical migration of sintered nanosilver on chloride", Mater. Chem. Phys., 151, 18-21. https://doi.org/10.1016/j.matchemphys.2014.12.001
  25. Maeda, T., Nakazawa, H., Kobayashi, Y., Yasuda, Y. and Morita, T. (2014), "Effects of reductant concentration and reduction temperature in synthesis of copper nanoparticles on their metal-metal bonding properties", Sci. Lett., 8(2) 1-9.
  26. Morisada, Y., Nagaoka, T., Fukusumi, M., Kashiwagi, Y., Yamamoto, M. and Nakamoto, M. (2010), "A low-temperature bonding process using mixed Cu-Ag nanoparticles", J. Electron. Mater., 39(8), 1283-1288. https://doi.org/10.1007/s11664-010-1195-3
  27. Murray, A.J., Jaroenapibal, P., Koene, B. and Evoy, S. (2006), "Sintering of silver nanoparticles for the formation of high temperature interconnect joints", Mater. Res. Soc. Symp. Proc., 942, 0942-W08-29.
  28. Nami, H., Halvaee, A., Adgi, H. and Hadian, A. (2010), "Investigation on microstructure and mechanical properties of diffusion bonded $Al/Mg_2Si$ metal matrix composite using copper interlayer", J. Mater. Process. Technol., 210(10), 1282-1289. https://doi.org/10.1016/j.jmatprotec.2010.03.015
  29. Niranjan, M.K. and Chakraborty, J. (2012), "Synthesis of oxidation resistant copper nanoparticles in aqueous phase and efficient phase transfer of particles using alkanethiol", Colloids Surf. A, 407, 58-63. https://doi.org/10.1016/j.colsurfa.2012.05.007
  30. Nishikawa, H., Hirano, T., Takemoto, T. and Terada, N. (2011), "Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste", Open Surf. Sci. J., 3, 60-64.
  31. Noor, E.E.M., Sharif, N.M., Yew, C.K., Ariga, T., Ismail, A.B. and Hussain, Z. (2010), "Wettability and strength of In-Bi-Sn lead-free solder alloy on copper substrate", J. Alloy. Compd., 507(1), 290-296. https://doi.org/10.1016/j.jallcom.2010.07.182
  32. Shi, F.G., Abdullah, M., Chungpaiboonpatana, S., Okuyama, K., Davidson, C. and Adamsc, J.M. (1999), "Electrical conduction of anisotropic conductive adhesives: effect of size distribution of conducting filler particles", Mater. Sci. Semiconduct. Process., 2(3), 263-269. https://doi.org/10.1016/S1369-8001(99)00018-9
  33. Shibuta, Y. and Suzuki, T. (2010), "Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study", Chem. Phys. Lett., 498(4-6), 323-327. https://doi.org/10.1016/j.cplett.2010.08.082
  34. Shiue, R.K., Tsay, L.W. Lin, C.L. and Ou, J.L. (2003), "The reliability study of selected Sn-Zn based leadfree solders on Au/Ni-P/Cu substrate", Microelectron. Reliab., 43(3), 453-463. https://doi.org/10.1016/S0026-2714(02)00259-7
  35. Singh, M., Sinha, I., Premkumar, M., Singh, A.K. and Mandal, R.K. (2010), "Structural and surface plasmon behavior of Cu nanoparticles using different stabilizers", Colloids Surf. A, 359(1-3), 88-94. https://doi.org/10.1016/j.colsurfa.2010.01.069
  36. Son, Y., Yeo, J., Ha, C.W., Lee, J., Hong, S., Nam, K.H., Yang, D.-Y. and Ko, S.H. (2012), "Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning", Thermochim. Acta, 542, 52-56. https://doi.org/10.1016/j.tca.2012.03.004
  37. Sugimoto, T., Kobayashi, M. and Adachi, Y. (2014), "The effect of double layer repulsion on the rate of turbulent and Brownian aggregation: experimental consideration", Colloids Surf. A, 443, 418-424. https://doi.org/10.1016/j.colsurfa.2013.12.002
  38. Tan, C.S., Lim, D.F., Ang, X.F., Wei, J. and Leong, K.C. (2012), "Low temperature Cu-Cu thermocompression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement", Microelectron. Reliab., 52(2), 321-324. https://doi.org/10.1016/j.microrel.2011.04.003
  39. Tu, K.-N. (2007), Solder Joint Technology, Springer, New York, NY, USA.
  40. Wang, Z., Wang, H. and Liu, L. (2012), "Study on low temperature brazing of magnesium alloy to aluminum alloy using Sn-xZn solders", Mater. Design, 39, 14-19. https://doi.org/10.1016/j.matdes.2012.02.021
  41. Weisman, C. (1976) Welding Handbook, Volume 1, (7th Edition), American Welding Society, MI, USA.
  42. Xu, L., Peng, J., Srinivasakannan, C., Chen, G. and Shen, A.Q. (2015), "Synthesis of copper nanocolloids using a continuous flowbased microreactor", Appl. Surf. Sci., 355, 1-6. https://doi.org/10.1016/j.apsusc.2015.07.070
  43. Yan, J., Zou, G., Wu, A., Ren, J., Yan, J., Hu, A. and Zhou, Y. (2012a), "Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging", Scr. Mater., 66(8), 582-585. https://doi.org/10.1016/j.scriptamat.2012.01.007
  44. Yan, J., Zou, G., Wu, A., Ren, J., Hu, A. and Zhou, Y.N. (2012b), "Polymer-protected Cu-Ag mixed NPs for low-temperature bonding application", J. Electron. Mater., 41(7), 1886-1892. https://doi.org/10.1007/s11664-012-2008-7
  45. Yasuda, Y., Ide, E. and Morita, T. (2009), "Low-temperature bonding using silver nanoparticles stabilized by short-chain alkylamines", Jpn. J. Appl. Phys., 48(12R), 125004. https://doi.org/10.1143/JJAP.48.125004
  46. Zhang, L. and Tu, K.N. (2014), "Structure and properties of lead-free solders bearing micro and nano particles", Mater. Sci. Eng. R, 82, 1-32. https://doi.org/10.1016/j.mser.2014.06.001