DOI QR코드

DOI QR Code

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A. (International Institute for Urban Systems Engineering, Southeast University)
  • 투고 : 2016.11.30
  • 심사 : 2017.05.20
  • 발행 : 2017.12.25

초록

Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

키워드

참고문헌

  1. Ahmed, M. and Hashmi, M.S.J. (1998), "Finite-element analysis of bulge forming applying pressure and inplane compressive load", Mater. Process. Technol., 77(1), 95-102. https://doi.org/10.1016/S0924-0136(97)00404-4
  2. Alizada, A.N. and Sofiyev, A.H. (2011a), "Modified Young's moduli of nano-materials taking into account the scale effects and vacancies", Meccanica, 46(5), 915-920. https://doi.org/10.1007/s11012-010-9349-1
  3. Alizada, A.N. and Sofiyev, A.H. (2011b), "On the mechanics of deformation and stability of the beam with a nanocoating", Reinf. Plastic. Compos., 30(18), 1583-1595. https://doi.org/10.1177/0731684411428382
  4. Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta. Mech., 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
  5. Altabey, W. (2017), "A study on thermo-mechanical Behavior of MCD through bulge test analysis", Adv. Computat. Des., Int. J., 2(2), 107-119.
  6. Brandon, J.F., Lecoanet, H. and Oytana, C. (1979), "A new formulation for the bulging of viscous sheet metals", Int. J. Mech. Sci., 21(7), 379-386. https://doi.org/10.1016/0020-7403(79)90058-4
  7. Chater, E. and Neale, K.W. (1983), "Finite plastic deformation of a circular membrane under hydrostatic pressure - I: Rate-independent behaviour", Mech. Sci., 25(4), 219-233. https://doi.org/10.1016/0020-7403(83)90026-7
  8. Ebrahimi, F. and Barati, M.R. (2016b-a), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
  9. Ebrahimi, F. and Barati, M.R. (2016a-b), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  10. Ebrahimi, F. and Barati, M.R. (2016c), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. DOI: 10.1007/s40430-016-0551-5
  11. Ebrahimi, F. and Barati, M.R. (2016d), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", J. Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
  12. Ebrahimi, F. and Barati, M.R. (2016e), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556
  13. Ebrahimi, F. and Barati, M.R. (2016f), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", J. Mech. Adv. Mater. Struct., 24(11), 924-936. DOI: http://dx.doi.org/10.1080/15376494.2016.1196795
  14. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239. DOI: http://dx.doi.org/10.1177/1077546316646239
  15. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of smart size-dependent higher order magnetoelectro-thermo-elastic functionally graded nanosize beams", J. Mech., 33(1), 23-33. https://doi.org/10.1017/jmech.2016.46
  16. Ebrahimi, F. and Farzamand, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", J. Mech. Adv. Mater. Struct., 24(10), 820-829. DOI: http://dx.doi.org/10.1080/15376494.2016.1196786
  17. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", J. Mech. Adv. Mater. Struct., 23(12), 1-58.
  18. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", J. Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  19. Ebrahimi, F. and Shafiei, N. (2016), "Influence of initial shear stress on the vibration behavior of singlelayered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", J. Mech. Adv. Mater. Struct., 24(9), 761-772. DOI: http://dx.doi.org/10.1080/15376494.2016.1196781
  20. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  21. Edwards, R.L., Coles, G. and Sharpe, W.N. (2004), "Comparison of tensile and bulge tests for thin-film silicon nitride", Soc. Experim. Mech., 44(1), 49-54. https://doi.org/10.1007/BF02427976
  22. Gologranc, F. (1975), "Beitrag zur Ermittlung von Flie$\ss$kurven im kontinuierlichen hydraulischen Tiefungsversuch (Evaluation of the flow stress curve with the continuous hydraulic bulge test)", Dissertation; Institute for Metal Forming Technology, University of Stuttgart, Germany.
  23. Grolleau, V., Gary, G. and Mohr, D. (2008), "Biaxial testing of sheet materials at high strain rates using viscoelastic bars", Experim. Mech., 48(3), 293-306. https://doi.org/10.1007/s11340-007-9073-5
  24. Hill, R. (1950), "A theory of plastic bulging of a metal diaphragm by lateral pressure", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(322), 1133-1142. https://doi.org/10.1080/14786445008561154
  25. Hill, R. (1990), "Constitutive modelling of orthotropic plasticity in sheet metals", Mech. Phys. Solids., 38(3), 405-417. https://doi.org/10.1016/0022-5096(90)90006-P
  26. Huang, A.W., Lu, C.H., Wu, S.C., Chen, T.C., Vinci, R.P., Brown, W.L. and Lin, M.T. (2016), "Viscoelastic mechanical properties measurement of thin Al and Al-Mg films using bulge testing ", Thin Solid Films, 618, 2-7. DOI: 10.1016/j.tsf.2016.03.064
  27. Ilahi, M.F. and Paul, T.K. (1985), "Hydrostatic bulging of a circular soft brass diaphragm", Int. J. Mech. Sci. 27(5), 275-280. https://doi.org/10.1016/0020-7403(85)90017-7
  28. Ilahi, M.F., Parmar, A. and Mellor, P.B. (1981), "Hydrostatic bulging of a circular aluminum diaphragm", Mech. Sci., 23(4), 221-227.
  29. Itozaki, H. (1982), "Mechanical properties of composition modulated copper-palladium foils", Ph.D. Dissertation; Northwestern University, Evanston, IL, USA.
  30. Jung, B., Lee, H., Hwang, K. and Park, H. (2012), "Measurement of mechanical properties of thin films using a combination of the bulge test and nanoindentation", Transact. Kor. Soc. Mech. Engr. B, 36(2), 117-123.
  31. Jung, B., Lee, H., Hwang, K. and Park, H. (2013), "Observation of size effect and measurement of mechanical properties of Ti thin film by bulge test", Transact. Kor. Soc. Mech. Engr. B, 37(1), 19-25. https://doi.org/10.3795/KSME-B.2013.37.1.019
  32. Kular, G.S. and The, J.H.L. (1972), "The bulging of anisotropic aluminum sheets - A comparison of theory and experiments", Int. J. Mach. Tool Des. Res., 12(4), 281-296. https://doi.org/10.1016/0020-7357(72)90015-7
  33. Mellor, P.B. (1956), "Stretch forming under fluid pressure", Mech. Phys. Solid., 5(1), 41-56. https://doi.org/10.1016/0022-5096(56)90006-0
  34. Panknin, W. (1959), "Der hydraulische Tiefungsversuch und die Ermittlung von Fliesskurven (The hydraulic bulge test and the determination of the flow stress curves)", Dissertation; Institute for Metal Forming Technology, University of Stuttgart, Germany.
  35. Small, M.K. and Nix, W.D. (1992), "Analysis of the accuracy of the bulge test in determining the mechanical properties of thin-films", Mater. Res., 7(6), 1553-1563. https://doi.org/10.1557/JMR.1992.1553
  36. Storakers, B. (1966), "Finite plastic deformation of a circular membrane under hydrostatic pressure", Mech. Sci., 8(10), 619-628. https://doi.org/10.1016/0020-7403(66)90040-3
  37. Suttner, S. and Merklein, M. (2016), "Experimental and numerical investigation of a strain rate controlled hydraulic bulge test of sheet metal", Mater. Process. Technol., 235, 121-133. https://doi.org/10.1016/j.jmatprotec.2016.04.022
  38. Tabata, O., Kawahata, K., Sugiyama, S. and Igarashi, I. (1989), "Mechanical property measurements of thin films using load-deflection of composite rectangular membranes", J. Sensors Actuat., 20(1-2), 135-141. https://doi.org/10.1016/0250-6874(89)87111-2
  39. Tang, S.C. (1982), "Large strain analysis of an inflating membrane", Comput. Struct., 15(1), 71-78. https://doi.org/10.1016/0045-7949(82)90034-7
  40. Wan, K., Guo, S. and Dillard, D.A. (2003), "A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress", Thin Solid Films, 425(1), 150-162. https://doi.org/10.1016/S0040-6090(02)01103-3
  41. Vlassak, J.J. (1994), "New experimental techniques and analysis methods for the study of mechanical properties of materials in small volumes", Ph.D. Dissertation; Stanford University, Stanford, CA, USA.
  42. Vlassak, J.J. and Nix, W.D. (1992), "A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films", J. Mater. Res., 7(12), 3242-3249. https://doi.org/10.1557/JMR.1992.3242
  43. Wang, N.M. and Shammamy, M.R. (1969), "On the plastic bulging of a circular diaphragm by hydrostatic pressure", Mech. Phys. Solids, 17(1), 43-64. https://doi.org/10.1016/0022-5096(69)90012-X
  44. Xiang, Y., Chen, X. and Vlassak, J.J. (2005), "Plane-strain bulge test for thin films", Mater. Res. Soc., 20(9), 2360-2370. https://doi.org/10.1557/jmr.2005.0313
  45. Yang, L., Long, S., Ma, Z. and Wang, Z. (2014), "Accuracy analysis of plane-strain bulge test for determining mechanical properties of thin films", Transact. Nonferrous Metals Soc. China, 24(10), 3265-3273. https://doi.org/10.1016/S1003-6326(14)63466-X
  46. Zeghloul, A., Mesrar, R. and Ferron, G. (1991), "Influence of material parameters on the hydrostatic bulging of a circular diaphragm", Mech. Sci., 33(3), 229-243. https://doi.org/10.1016/0020-7403(91)90049-9
  47. Zhang, J., Sun, Y., Li, D., Cao, Y., Wang, Z., Ma, J. and Zhao, G. (2015), "Modeling the mechanics of graphene-based polymer composite film measured by the bulge test", Phys. D: Appl. Phys., 48(42), 425302. https://doi.org/10.1088/0022-3727/48/42/425302

피인용 문헌

  1. Fatigue damage identification for composite pipeline systems using electrical capacitance sensors vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665X/aacc99
  2. Deep Learning-Based Damage, Load and Support Identification for a Composite Pipeline by Extracting Modal Macro Strains from Dynamic Excitations vol.8, pp.12, 2017, https://doi.org/10.3390/app8122564
  3. A Comparison of Three Different Methods for the Identification of Hysterically Degrading Structures Using BWBN Model vol.4, pp.None, 2017, https://doi.org/10.3389/fbuil.2018.00080
  4. Accurate estimation of DLC thin film hardness using genetic programming vol.111, pp.6, 2020, https://doi.org/10.3139/146.111911