DOI QR코드

DOI QR Code

Growth features and nucleation mechanism of Ga1-x-yInxAlyN material system on GaN substrate

  • Simonyan, Arpine K. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University) ;
  • Gambaryan, Karen M. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University) ;
  • Aroutiounian, Vladimir M. (Department of Physics of Semiconductors and Microelectronics, Yerevan State University)
  • 투고 : 2015.11.09
  • 심사 : 2017.04.14
  • 발행 : 2017.12.25

초록

The continuum elasticity model is applied to investigate quantitatively the growth features and nucleation mechanism of quantum dots, nanopits, and joint QDs-nanopits structures in GaInAlN quasyternary systems. We have shown that for GaInAlN material system at the critical strain of ${\varepsilon}^*=0.039$ the sign of critical energy and volume is changed. We assume that at ${\varepsilon}={\varepsilon}^*$ the mechanism of the nucleation is changed from the growth of quantum dots to the nucleation of nanopits. Obviously, at small misfit (${\varepsilon}$ < ${\varepsilon}^*$), the bulk nucleation mechanism dominates. However, at ${\varepsilon}$ > ${\varepsilon}^*$, when the energy barrier becomes negative as well as a larger misfit provides a low-barrier path for the formation of dislocations, the nucleation of pits becomes energetically preferable. The free energy of mixing for $Ga_{1-x-y}In_xAl_yN$ quasiternary system was calculated and studied and its 3D sketch was plotted.

키워드

참고문헌

  1. Aroutiounian, V.M., Gambaryan, K.M. and Soukiassian, P.G. (2010), "Competing nucleation mechanisms and growth of InAsSbP quantum dots and nanopits on the InAs(100) surface", Surf. Sci., 604(13), 1127-1134. https://doi.org/10.1016/j.susc.2010.03.027
  2. Bi, Z., Lindgren, D., Johansson, B.J., Ek, M., Wallenberg, L.R., Gustafsson, A., Borgstrom, M.T., Ohlsson, J., Monemar, B. and Samuelson, L. (2014), "InN quantum dots on GaN nanowires grown by MOVPE", Physica Status Solidi (c), 11, 3-4. https://doi.org/10.1002/pssc.201470034
  3. Biehl, M., Much, F. and Vey, C. (2005), "Off-lattice Kinetic Monte Carlo simulations of strained eteroepitaxial growth", Int. Series of Numerical Mathematics, 149, 41-56.
  4. Deibuk, V.G. (2003), "Thermodinamic stability of GaInSb, InAsSb, and GaInP epitaxial films", Semiconductors, 37(10), 1151-1155. https://doi.org/10.1134/1.1619508
  5. Emeljanova, O.S., Strelchenko, S.S. and Usacheva, M.P. (2009), "Spinodal decomposition of ZnO-BeO alloys", Semiconductors, 43(2), 135-138. https://doi.org/10.1134/S1063782609020018
  6. Gambaryan, K.M. (2010), "Interaction and cooperative nucleation of InAsSbP quantum dots and pits on InAs(100) substrate", Nanoscale Res. Lett., 5(3), 587. https://doi.org/10.1007/s11671-009-9510-8
  7. Gambaryan, K.M., Aroutiounia, V.M. and Harutyunyan, V.G. (2011), "Photovoltaic and optoelectronic properties of InAs(100)-based PCCs with quantum dots and nanopits", Infrared Phys. Techn., 54(2), 114-120. https://doi.org/10.1016/j.infrared.2011.01.005
  8. Ihsiu, H. and Stringfellow, G.B. (1996), "Solid phase immiscibility in GaInN", Appl. Phys. Lett., 69(18), 2701-2703. https://doi.org/10.1063/1.117683
  9. Kim, H.W., Kim, H.S., Na, H.G., Yang, J.C., Kim, S.S. and Lee, C. (2010), "Self-catalytic growth and characterization of composite (GaN, InN) nanowires", Chem. Eng. J., 165(2), 720-727. https://doi.org/10.1016/j.cej.2010.09.035
  10. Lozano, J.G., Sanchez, A.M., Garcia, R., Gonzalez, D. (2005), "Nucleation of InN quantum dots on GaN by metalorganic vapor phase epitaxy", Appl. Phys. Lett., 87(26), 263104. https://doi.org/10.1063/1.2152110
  11. Lozano, J.G., Sanchez, A.M., Garcia, R., Ruffenach, S., Briot, O. and Gonzalez, D. (2007), "Strain relief analysis of InN Quantum Dots grown on GaN", Nanoscale Res Lett., 2(9), 442-446. https://doi.org/10.1007/s11671-007-9080-6
  12. Lahourcade, L., Valdueza-Felip, S., Kehagias, T., Dimitrakopulos, G.P., Komninou, P. and Monroy, E. (2009), "Stranski-Krastanow growth of 1122 -oriented GaN/AlN quantum dots", App. Phys. Lett., 94, 111901. https://doi.org/10.1063/1.3095499
  13. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S. (1995), "Superbright green InGaN singlequantumwell structure light-emitting diodes", Jpn. J. Appl. Phys., 34, L79. https://doi.org/10.1143/JJAP.34.L79
  14. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, Yamada, N.T., Matsushita, T., Kiyoko, H. and Sugimoto, Y. (1996), "InGaN-based multi-quantum-well-structure laser Diodes", Jpn. J. Appl. Phys., 35, L74. https://doi.org/10.1143/JJAP.35.L74
  15. Onabe, K. (1984), "Immiscibility analysis for III-V Quaternary solid solutions", NEC Res. Develop., 72, 1-11.
  16. Soto Rodriguez, P.E.D., Gomez, V.J., Kumar, P., Calleja, E. and Notzel, R. (2013), "Near-infrared InN quantum dots on high-In composition InGaN", Appl. Phys. Lett., 102(13), 131909. https://doi.org/10.1063/1.4800779
  17. Stringfellow, G.B. (1999), Organometallic Vapor-Phase Epitaxy: Theory and Practice, Elsevier, San Diego, CA, USA.
  18. Strite, S. and Morkoc, H. (1992), "GaN, AIN, and InN: A review", J. Vac. Sci. Technol. B, 10(4), 1237-1266. https://doi.org/10.1116/1.585897
  19. Tersoff, J. and Le Goues, F.K. (1994), "Competing relaxation mechanisms in strained layers", Phys. Rev. Lett., 72(22), 3570. https://doi.org/10.1103/PhysRevLett.72.3570
  20. Tersoff, J. and Tromp, R.M. (1993), "Shape transition in growth of strained islands: Spontaneous formation of quantum wires", Phys. Rev. Letters, 70(18), 2782-2785. https://doi.org/10.1103/PhysRevLett.70.2782
  21. Vigdorovich, E.N. and Sveshnikov, Y.N. (2000), "Thermodynamic stability of GaN-InN-AlN system", Inorganic Mater., 36(5), 465-467. https://doi.org/10.1007/BF02758049
  22. Wakahara, A., Tokuda, T., Dang, X.-Z., Noda, S. and Sasaki, A. (1997), "Compositional inhomogeneity and immiscibility of a GaInN ternary alloy", Appl. Phys. Lett., 71, 906. https://doi.org/10.1063/1.119684
  23. Yang, W., Li, J., Zhang, Y., Huang, P.K., Lu, T.C., Kuo, H.C., Li, S., Yang, X., Chen, H., Liu, D. and Kang, J. (2014), "High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability", Scientific Reports, 4, 5166.
  24. Zenkiewicz, M. (2007), "Methods for the calculation of surface free energy of solids", J. Achieve. Mater. Manuf. Eng., 24(1), 137-147.