DOI QR코드

DOI QR Code

라디오파 해동기의 해동 및 가열성능 분석

Frozen Food Thawing and Heat Exchanging Performance Analysis of Radio Frequency Thawing Machine

  • 김진세 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박석호 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 최동수 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 최승렬 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 김용훈 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이수장 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박천완 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 한귀정 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 조병관 (충남대학교 바이오시스템공학과) ;
  • 박종우 (농촌진흥청 국립농업과학원 농업공학부)
  • Kim, Jinse (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Seok Ho (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Dong Soo (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Seung Ryul (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Yong Hoon (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Soo Jang (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Chun Wan (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Han, Gui Jeung (Department of Agro-food Resource, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Park, Jong Woo (Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2016.12.02
  • 심사 : 2017.02.08
  • 발행 : 2017.02.28

초록

본 연구는 제작된 27.12 MHz 라디오파 해동기의 성능을 분석하고, 냉동 식재료의 해동 중 열전달 특성을 분석하기 위하여 수행되었다. 라디오파 해동 중 크기에 따른 가열 특성 분석을 위한 한천겔 블록과 식품 및 출력별 해동 속도와 최대가열온도를 분석하기 위하여 일정한 크기의 시료를 $-80^{\circ}C$에 냉동하여 준비하고 각각 50, 100, 200 및 400 W의 라디오파를 가하여 해동을 수행하였다. 그 결과 한천겔은 크기에 관계없이 내외부에서 균등해동이 이루어졌으며, 각 출력별 $-5^{\circ}C$에서 $0^{\circ}C$까지의 상변화 시간은 무에서 30, 26, 13, 8분, 돈육 등심에서 38, 25, 11, 5분, 우둔살에서 23, 17, 11, 6분, 닭 가슴살에서 42, 29, 13, 9분, 참치에서 225, 23, 10, 5분이 소요되었다. 각 식재료에서 라디오파의 출력이 증가할수록 해동속도가 급격히 증가하였지만 상변화 구간에서 지연되어 완전해동까지는 시간이 다소 소요되었으나 효과적으로 균일 해동이 이루어졌다. 해동 이후 최대가열온도는 무, 돈육 등심, 우둔살, 닭 가슴살, 참치에서 50 W는 각각 19.5, 9.2, 21.8, 8.8 및 $16.8^{\circ}C$였으며, 100 W에서 23.5, 15.5, 27.3, 12.3 및 $19^{\circ}C$, 그리고 200 W에서는 42, 26.9, 45.7, 22.1와 $39.4^{\circ}C$, 마지막으로 400 W에서는 48.5, 54.7, 63.6, 57.3과 $44.9^{\circ}C$까지 상승하였다. 출력 증가에 따라 모든 식재료에서 최대가열온도 또한 증가하였지만 냉동 식재료의 수분 및 지방 함량이 라디오파 가열속도 미치는 영향은 나타나지 않았다. 이러한 결과는 제작된 라디오파 해동기가 고출력으로 갈수록 해동효율이 증가하는 반면 해동 후 가열이 일어나기 때문에 이를 제어하기 위한 개선이 필요하며, 라디오파 해동이 냉동 식재료의 해동품질에 미치는 영향에 대한 추가적인 연구 또한 필요할 것으로 판단된다.

This study investigated the effects of 27.12 MHz radio frequency (RF) heating on heat transfer phenomena during the thawing process of frozen food. To determine the velocity of the RF thawing machine, samples were frozen at $-80^{\circ}C$ and subjected to different power treatments. The phase change times (-5 to $0^{\circ}C$) of frozen radish were 30, 26, 13, and 8 min; those of pork sirloin were 38, 25, 11, and 5 min; those of rump were 23, 17, 11, and 6 min; those of chicken breast were 42, 29, 13, and 9 min; and those of tuna were 25, 23, 10, and 5 min at 50, 100, 200, and 400 W, respectively. The heating limit temperatures of the radish, pork sirloin, rump, chicken breast, and tuna samples were 19.5, 9.2, 21.8, 8.8, and $16.8^{\circ}C$ at 50 W; 23.5, 15.5, 27.3, 12.3, and $19^{\circ}C$ at 100 W; 42, 26.9, 45.7, 22.1, and $39.4^{\circ}C$ at 200 W; and 48.5, 54.7, 63.6, 57.3, and $44.9^{\circ}C$ at 400 W. These results suggest that high-power RF improves thawing velocity and heating limit temperatures, and that an improvement on the operation of the RF thawing machine, according to food temperatures, is needed.

키워드

과제정보

연구 과제 주관 기관 : 농촌진흥청

참고문헌

  1. AOAC. 1990. Official Methods of Analysis. 15th Ed., Association of analytical chemists, Washington, DC, USA, No. 990.19 & 960.39.
  2. Bernardi P, Cavagnaro M, Pisa S, Piuzzi E. 2003. Specific absorbtion rate and temperature elevation in a subject exposed in the far field of radio frequency source operating in the 10-900 MHz range. IEEE Trends Biomed. Eng. 50: 295-304. https://doi.org/10.1109/TBME.2003.808809
  3. Berry BW. 1990. Changes in quality of all-beef and soy-extended patties as influenced by freezing rate, frozen storage temperature, and storage time. J. Food Sci. 4: 893-897.
  4. Cengel YA. 2003. Heat Transfer; A Practical Approach. 2th Ed., McGraw-Hill Education, Columbus, OH, USA, pp. 4-20.
  5. Hong GP, Park SH, Kim JY, Lee CH, Lee S, Min SG. 2005. The effect of thawing rate on the physicochemical properties of frozen ostrich meat. Food Sci. Biotechnol. 14: 676-680.
  6. Jeremiah LE. 1980. Effect of frozen storage and protective warp upon the cooking losses, palatability and rancidity of fresh and cured pork cuts. J. Food Sci. 45: 187-192. https://doi.org/10.1111/j.1365-2621.1980.tb02573.x
  7. Kim JS, Park JW, Park SH, Choi DS, Choi SR, Kim YH, Lee SJ, Park CW, Han GJ, Cho BK. 2016. Study of radio frequency thawing for cylindrical pork sirloin. J. Biosystems Eng. 41: 108-115. https://doi.org/10.5307/JBE.2016.41.2.108
  8. Ko SH, Hong GP, Park SH, Choi MJ, Min SG. 2006. Studies on physical properties of pork frozen by various high pressure freezing process. Kor. J. Food Sci. Ani. Resour. 26: 464-470.
  9. Kong JY, Kim JH, Kim MY, Bae SK. 1992. Effectof freezing conditions on the formation of ice crystals food during freezing process. J. Korean Soc. Food Nutr. 21: 213-218
  10. Llave Y, Terada Y, Fukuoka M, Sakai N. 2014. Dielectric properties of frozen tuna and analysis of defrosting using a radiofrequency system at low frequencies. J. Food Eng. 139: 1-9. https://doi.org/10.1016/j.jfoodeng.2014.04.012
  11. Miles CA, Morley MJ, Rendell M. 1999. High power ultrasonic thawing of frozen foods. J. Food Eng. 39: 151-159. https://doi.org/10.1016/S0260-8774(98)00155-1
  12. Moon YH. 2013. Changes in physical properties of ham and loin from low-fat pork cuts during chilling after thawing. J. East Asian Soc. Dietary Life. 23: 487-495.
  13. Obuz E, Dikeman ME. 2003. Effects of cooking beef muscles from frozen or thawed ststes on cooking traits and palatability. Meat Sci. 65: 993-997. https://doi.org/10.1016/S0309-1740(02)00314-5
  14. Park JW, Kim JS, Park SH, Choi DS, Choi SR, Kim YH, Lee SJ, Kim HY. 2015. Effects of various thawing conditions on quality characteristics of frozen garlic. J. East Asian Soc. Dietary Life. 25: 893-901. https://doi.org/10.17495/easdl.2015.10.25.5.893
  15. Park MH, Kwon JE, Kim SR, Won JH, Ji JY, Hwang IK, Kim MR. 2012. Physicochemical and microbiological properties of pork by various thawing methods. J. East Asian Soc. Dietary Life. 22: 298-304.
  16. Piyasena P, Dussault C, Koutchma T, Ramaswamy HS, Awuah GB. 2003. Radio frequency heating of foods : principles, applications and related properties-a review. Crit. Rev. Food Sci. Nutr. 43: 587-606 . https://doi.org/10.1080/10408690390251129
  17. Reied DS. 1997. Overview of Physical/chemical Aspects of Freezing Quality in Frozen Food. Springer SBM, New York, USA, pp. 10-28.
  18. Sale AJH. 1976. A review of microwaves for food processing. J. Food Technol. 11: 319-329. https://doi.org/10.1111/j.1365-2621.1976.tb00730.x
  19. Seong PM, ChoSH, Kim JH, Hah KH, Park BY, Lee JM, Kim DH. 2009. Meat quality of pork muscles from low-fat cuts. Korean J. Food Sci. Ani. Resour. 29: 364-373. https://doi.org/10.5851/kosfa.2009.29.3.364
  20. Uyar R, Erdongdu F, Marra F. 2014. Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: a computational study. Food Bioprod. Process. 92:243-251. https://doi.org/10.1016/j.fbp.2013.12.005
  21. Virtanen AJ, Goedeken DL, Tong CH. 1997. Microwave assisted thawing of model frozen foods using feed-back temperature control and surface cooling. J. Food Sci. 62: 150-154. https://doi.org/10.1111/j.1365-2621.1997.tb04388.x
  22. Wang J, Luechapattanaporn K, Wang Y, Tang J. 2012. Radio frequence heating of heterogeneous food-meat lasagna. J. Food Eng. 108: 183-193. https://doi.org/10.1016/j.jfoodeng.2011.05.031
  23. Wingger RJ, Fennema O. 1976. Tenderness and water holding properties of beef muscle as influenced by freezing subsequent storage at $-3^{\circ}C$ or $15^{\circ}C$. J. Food Sci. 41: 1433-1438. https://doi.org/10.1111/j.1365-2621.1976.tb01189.x