DOI QR코드

DOI QR Code

Evaluation of Antimicrobial Activity of Steamed and Fermented Asparagus cochinchinenesis

증숙 및 발효한 천문동의 항균활성과 특성

  • Lee, Seung-Min (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Su-In (Department of Food Science & Technology, Pusan National University) ;
  • Kang, Moon-Sun (Department of Food Science & Technology, Pusan National University) ;
  • Lee, Chung-Yeol (Kanglim Organic Co., Ltd.) ;
  • Hwang, Dae-Youn (Department of Biomaterials Science, Pusan National University) ;
  • Lee, Hee-Sup (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science & Technology, Pusan National University)
  • 이승민 (부산대학교 식품공학과) ;
  • 김수인 (부산대학교 식품공학과) ;
  • 강문선 (부산대학교 식품공학과) ;
  • 이충렬 ((주)강림오가닉) ;
  • 황대연 (부산대학교 바이오소재과학과) ;
  • 이희섭 (부산대학교 식품영양학과 및 김치연구소) ;
  • 김동섭 (부산대학교 식품공학과)
  • Received : 2017.05.12
  • Accepted : 2017.05.17
  • Published : 2017.05.31

Abstract

This study was carried out to investigate antimicrobial activity and characteristics of Asparagus cochinchinenesis which was steamed and fermented with lactic acid bacteria. A. cochinchinensis was prepared to steaming process which was washed and freeze dried. A. cochinchinensis was steamed at $95^{\circ}C$ for 12 h and dried by hot air at $50^{\circ}C$ for 24 h. After steaming process, A. cochinchinensis was fermented with lactic acid bacteria (Leuconostoc mesenteroides 4395, Lactobacillus sakei 383 and Lactobacillus plantarum KCCM 11322). Ethyl acetate extracts of fermented A. cochinchinensis had antimicrobial activities for the respiratory disease bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli). A. cochinchinensis had highest antimicrobial activity for the P. aeruginosa which fermented with L. mesenteroides 4395. The minimum inhibition concentration (MIC) of A. cochinchinensis fermented with L. mesenteroides 4395 was 10 mg/mL for S. aureus, S. epidermidis, E. coli and 5 mg/mL for P. aeruginosa. The MIC of A. cochinchinensis fermented with L. sakei 383 and A. cochinchinensis fermented with L. plantarum KCCM 11322 were the same. Total sugar was decreased from $863.33{\pm}17.47mg/mL$ to $722.67{\pm}5.51mg/mL$ during the steaming process. But reducing sugar was increased from $99.36{\pm}1.32mg/mL$ to $109.29{\pm}2.71mg/mL$ during the steaming process. Total sugar was decreased to 301.50-361.42 mg/mL and reducing sugar was decreased to 27.39-62.20 mg/mL during the fermentation process.

본 연구에서는 증숙처리 후 발효를 통해 천문동 에틸아세테이트 추출물의 항균활성이 증가하는지 알아보고자 하였다. 선행연구에서 S. aureus와 P. aeruginosa에 대한 항균활성이 나타나지 않았던 L. plantarum KCCM 11322로 발효한 천문동의 경우 증숙 처리 후 발효를 하였을 때 25 mg/mL 추출물 농도에서 생장 저해환이 나타났다. 증숙 후 발효한 천문동의 최소저해농도를 측정한 결과 선행연구에서 L. mesenteroides 4395로 발효한 천문동 추출물의 경우 최소저해농도가 25 mg/mL였으나 증숙 처리 후 발효시 10 mg/mL인 것으로 나타났다. P. aeruginosa에 대한 최소저해 농도는 증숙 처리 후 발효하였을 때 모든 추출물이 5 mg/mL인 것으로 나타났다. 이를 통해 천문동을 증숙 처리 후 발효를 하면 증숙 처리 하지 않고 발효한 천문동 보다 항균활성이 개선될 수 있을 것으로 사료되며 이는 증숙 처리를 통해 항균활성이 있는 것으로 보고된 폴리페놀과 플라보노이드의 함량이 증가하기 때문인 것으로 판단된다. 총 당의 경우 증숙 처리시 감소되는 것으로 나타났고 환원당의 경우 증숙 처리를 통해 증가한 것으로 나타났다. 발효 후 총당과 환원당은 모두 크게 감소하여 젖산균의 발효를 통해 당이 소비된 것으로 사료된다. 발효에 따른 pH 및 산도의 변화는 L. plantarum KCCM 11322로 발효하였을 때 L. mesenteroides 4395와 L. sakei 383로 발효한 것 보다 완만하게 변화하였으며 수분 및 회분은 발효균주에 따른 차이가 나타나지 않았다.

Keywords

Acknowledgement

Supported by : 농림수산식품 기술기획평가원

References

  1. Alvarez-Suarez JM, Tulipani S, Diaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M. 2010. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. FCT. 48: 2490-2499
  2. AOAC. 1995, Official Methods of Analysis. Association of Official Analytical Chemists, Washington DC, USA.
  3. Baek H, Ahn HR, Cho YS, Oh KH. 2010. Antibacterial effects of Lactococcus lactics HK-9 isolated from feces of a new born infant. Korean J. Microbiol. 46: 127-133.
  4. Capraz O, Deniz A, Dogan, N. 2017. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere 181: 544-550. https://doi.org/10.1016/j.chemosphere.2017.04.105
  5. Ahmad I. Beg AZ. 2001. Antimicrobial and phytochemical studies on 45 Indian medical plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 74: 113-123. https://doi.org/10.1016/S0378-8741(00)00335-4
  6. Choi GY, Yoon TS, Choo BK, Moon BC, Chae SW, Kim HK. 2008. Study on the expected efficacies of the Asparagi Tuber by analysis of single-medicine prescriptions on the Korean medicinal literatures. J. Oriental Med. 14: 59-66.
  7. Choi SB, Kang ST. 2014, Investigation of antimicrobial activity and stability of Orixa japonica Thunb. Leaf extract. Korean J. Food. Sci. Technol. 46: 39-43. https://doi.org/10.9721/KJFST.2014.46.1.39
  8. Choo BK, Moon BC, Yoon TS, Lee AY, Chun JM, Kim HK. 2009. Ecological characteristics of the Asparagus cochinchinenesis (Lour.) Merr. population in South Korea. J. Medicinal Crop Sci. 17: 125-132.
  9. Chung SW, Kang HJ, Lee SH, Lee HM. 2006. Microbiology of chronic maxillary sinusitis in children. J. Otolaryngol. 49: 499-503.
  10. Hong HD, Kim YC, Rho JH, Kim KT, Lee CY. 2007. Changes on physicochemical properties of Panax ginseng C. A. Meyer during repeated steaming process. J. Ginseng Res. 31: 222-229. https://doi.org/10.5142/JGR.2007.31.4.222
  11. Jang AS. 2014. Impact of particulate matter on health. J. Korean Med Assoc. 57: 763-768. https://doi.org/10.5124/jkma.2014.57.9.763
  12. Jung LS, Yoon WB, Park SJ, Park DS, Ahn JH. 2012. Evaluation of physicochemical properties and biological activities of steamed and fermented Deodeok (Codonopsis Ianceolata). Korean J. Food. Sci. Technol. 44: 135-139. https://doi.org/10.9721/KJFST.2012.44.1.135
  13. Kim PH, Kim MJ, Kim JH, Lee JS, Kim KH, Kim HJ, Jeon YJ, Heu MS, Kim JS. 2014. Nutritional and physiologically active characterizations of the sea squirt Halocynthia roretzi sikhae and the seasoned sea squirt. Kor. J. Fish Aquat. Sci. 47: 1-11
  14. Kim RU, Ahn SC, Yu SN, Kim KY, Seong JH, Lee YG, Kim HS, Kim DS. 2011. Screening and identification of soy curd-producing lactic acid bacteria. J. Life Sci. 21: 235-241. https://doi.org/10.5352/JLS.2011.21.2.235
  15. Kim SI, Lee SM, Lee CY, Son HJ, Hwang DY, Lee HS, Kim DS. 2016. Antimicrobial activity and characteristics of Asparagus cochinchinensis fermented with lactic acid bacteria. Food Eng. Prog. 20: 278-284. https://doi.org/10.13050/foodengprog.2016.20.4.278
  16. Kim TH, Cho KP, Lee JS, Woo YM, Seong JS, Noh CS. 2013. Differences in bacterial species and their resistance rates based on sputum cultures between tertiary hospitals and smaller medical institutions. EMJ. 36: 126-131.
  17. Kimura T, But PPH, Sung CK, Han BH. 1996. International Collation of Traditional and Folk Medicine: Northeast Asia-Part 1. World Scientifific, Singapore, pp. 174-175
  18. Kook YB, 2012. Applications of prescriptions including Asparagi radix and Liriopis tuber in Dongeuibogam. Herbal Formula Sci. 20: 88-99.
  19. Kwak HM, Kim JY, Chung SK, Kwon SH, Jeong HH, Hur JM, Song KS. 2005 Changes in chemical composition and biological activities of oriental crude drugs by food processing techniques III - changes of HMF contents from roasted Asparagi tuber. Korean J. Pharmacogn. 36: 235-239.
  20. Lee GY, Son YJ, Jeon YH, Kang HJ, Hwang IK. 2015. Changes in physicochemical properties and sensory characteristics of Burdock (Arctium lappa) during repeated steaming and drying procedures. Korean. J. Food Sci. Technol. 47: 336-334. https://doi.org/10.9721/KJFST.2015.47.3.336
  21. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. 2015. Characterization of Korean red ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 39: 384-391. https://doi.org/10.1016/j.jgr.2015.04.009
  22. Lee SJ, Hong JY, Kwon OJ, Shin SR, Yoon KY. 2013. Antioxidant and antimicrobial activities of black Doraji (Platycodon grandiflorum). Korean J. Food Preserv. 20: 510-517. https://doi.org/10.11002/kjfp.2013.20.4.510
  23. Luong LMT, Phung D, Sly PD, Morawska L, Thai PK. 2017. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam. Sci. Total. Environ. 578: 249-255. https://doi.org/10.1016/j.scitotenv.2016.08.012
  24. Hong YD, Lee DW, Jung HJ, Park JH, Kang SY, Jung DH, Park SM, Park, YS, Lee SH, Han YJ. Annual report of air quality in Korea, 2015. Available from: http://library.me.go.kr/search/DetailView.ax?5618423. Accessed Apr. 28. 2016.
  25. Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F, Yang I. A. 2012. Respiratory health effects of diesel particulate matter. Respirology 17: 201-212. https://doi.org/10.1111/j.1440-1843.2011.02109.x
  26. Rodopoulou S, Chalbot MC, Samoli E, Dubois DW, Flippo BDS, Kavouras IG. 2014. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory disease in Dona Ana County, New Mexico. Environ. Res. 129: 39-46. https://doi.org/10.1016/j.envres.2013.12.006
  27. Saeidnia S, Manayi A, Gohari AR, Abdollahi M. 2014. The story of beta-sitosterol- A review. European J. Med. Plant. 4: 590-609. https://doi.org/10.9734/EJMP/2014/7764
  28. Shin DH, Kang KS, Lee JY, Jeong DY, Han GS. 2010. On chemical characteristics of sour Doenjang (Fermented soybean paste). J. Fd. Hyg. Safety. 25: 360-366
  29. Shin JS, Kim MH, Nam YT. 1991. Incidence and etiology of pneumonia acquired during mechanical ventilation. Korean J. Anesthesiol. 24: 1098-1103. https://doi.org/10.4097/kjae.1991.24.6.1098
  30. Sohn KC. 1997. Otitis media and sinusitis. Pediatr. 40: 1501-1507.
  31. Song CK, 2016. Status of particulate matter and countermeasures. KOSHAM. 16: 44-49
  32. Song TH, Kim SS. 1991. A study on the effect of ginseng on quality characteristics of kimchi. Korean J. Soc. Food Sci. 7: 81-88.
  33. Tao Y, Mi S, Zhou S, Wang S, Xie X. 2014. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environ. Pollut. 185: 196-201. https://doi.org/10.1016/j.envpol.2013.10.035
  34. Wang Y, McAllister TA, Yanke LJ, Cheeke PR. 2000. Effect of steroidal saponin from Yuca schidige extract on ruminal microbes. J. Appl. Microbiol. 88: 887-896. https://doi.org/10.1046/j.1365-2672.2000.01054.x
  35. Yang CR, Zhang Y, Jacob MR, Khan SI, Zhang YJ, Li XC. 2006. Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother. 50: 1710-1714. https://doi.org/10.1128/AAC.50.5.1710-1714.2006
  36. Yoo MY, Jung YJ, Yang JY. 2005. Antimicrobial activity of herb extracts. J. Korean Soc. Food Sci. Nutr. 34: 1130-1135. https://doi.org/10.3746/jkfn.2005.34.8.1130

Cited by

  1. 천문동 뿌리의 자연발효에 관여하는 미생물 및 발효 후 효능 변화 vol.18, pp.2, 2017, https://doi.org/10.15429/jkomor.2018.18.2.96
  2. Anti-bacterial Effect of Oenothera lamarckiana Aerial Part Extract vol.26, pp.4, 2017, https://doi.org/10.15616/bsl.2020.26.4.383