DOI QR코드

DOI QR Code

Purification of Alginate Lyase from Streptomyces violaceoruber and the Growth Activity of Intestinal Bacteria by Degree of Polymerization of Alginate Hydrolysates

Streptomyces violaceoruber 유래 Alginate Lyase의 정제 및 Sodium Alginate 가수분해 올리고당의 중합도별 Bifidobacterium spp.과 Lactobacillus spp.에 대한 생육활성

  • Yoon, Min (Department of Food Science & Biotechnology, Gachon University) ;
  • Park, Young-Seo (Department of Food Science & Biotechnology, Gachon University) ;
  • Park, Gwi-Gun (Department of Food Science & Biotechnology, Gachon University)
  • 윤민 (가천대학교 바이오나노대학 식품생물공학과) ;
  • 박영서 (가천대학교 바이오나노대학 식품생물공학과) ;
  • 박귀근 (가천대학교 바이오나노대학 식품생물공학과)
  • Received : 2015.11.02
  • Accepted : 2016.01.11
  • Published : 2017.05.31

Abstract

Alginate lyase from Streptomyces violaceoruber was purified by DEAE sephacel chromatography and SP sepharose chromatography. The specific activity of the purified enzyme was 14.6 units/mg protein, representing a 40.6-fold purification of the crude extract. The final preparation thus obtained showed a single band on Tricine-SDS polyacrylamide gel electrophoresis whose molecular weight was determined to be 23.3 kDa. The polyMG block of sodium alginate was hydrolyzed by the purified alginate lyase and then separated by activated carbon column chromatography and bio gel P-2 gel filtration. The main hydrolysates were composed of hetero type M/G-oligosaccharides with the degrees of polymerization (D.P.) being 6 and 8. To investigate the effects of hetero type M/G-oligosaccharides from the sodium alginate on the growth of some intestinal bacteria, cells were cultivated individually on the modified-MRS medium containing D.P. 6 and 8 M/G-oligosaccharides. B. longumgrew 4.25-fold and 6.44-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides compared with those of standard MRS medium. In addition, B. bifidumgrew 3.3-fold and 5.4-fold more effectively by the treatment of D.P. 6 and 8 M/G-oligosaccharides. In conclusion, D.P. 8 was more effective than D.P. 6 hetero M/G-oligosaccharides as regards the growth of Bifidobacteriumspp. and Lactobacillus spp.

DEAE sephacel anion chromatography 및 SP sepharose cation chromatography에 의해 Streptomyces violaceoruber 유래 alginate lyase의 정제를 수행하여 비활성 14.59 units/mL 정제배율 40.64배를 나타내었다. Tricine SDS-PAGE에 의한 단일밴드를 확인하였고, 분자량은 23.3 kDa으로 결정되었다. 정제효소에 의해 sodium alginate를 가수분해하여 1차 activated carbon column chromatography와 2차 bio gel P-2 gel filtration에 의해 당가수분해물을 분리 회수하여 TLC와 FACE를 통해 중합도를 확인하고 Timell's method에 의해 hetero type M/G-oligosaccharide 중합도 6, 8로 결정되었다. B. animalis, B. bifidum, B. breve, B. infantis, B. longum와 L. acidophilus, L. casei, L. reuteri에 생육활성에 대한 중합도 6, 8의 영향을 검토하기 위하여 modified-MRS media에 탄소원으로 중합도 6, 8를 대체하여 생육활성을 비교한 결과 B. longum에서는 D.P. 6 M/G-oligosaccharide를 탄소원으로 대체한 경우 표준 MRS배지와 비교하여 4.25배, D.P. 8에서 6.44배의 상대활성을 나타내어 가장 우수한 생육활성을 나타내었으며, B. bifidum의 경우에서도 D.P. 6에서 3.27배, D.P. 8에서 5.4배의 상대활성을 나타내었다. 이외에도 B. animalis, B. breve그리고 L. casei에 있어서도 D.P. 8의 경우 3배의 상대활성을 나타내었으나, L. reuteri에 대한 D.P. 8의 경우에서는 표준 MRS media와 비교하여 0.29배로 감소하였다. 결과적으로 D.P. 8의 올리고당이 D.P. 6의 올리고당보다 생육활성에 크게 기여하는 것으로 나타났다.

Keywords

References

  1. Atsuki K, Tomoda Y. 1926. Studies on seaweeds of Japan I. The chemical constituents of Laminaria. J. Soc. Chem. Ind. Japan 29: 509-517.
  2. Chitnis CE, Ohman DE. 1990. Cloning of Pseudomonas aeruginosaalg G, which controls alginate structure. J. Bacteriol. 172: 2894-2900. https://doi.org/10.1128/jb.172.6.2894-2900.1990
  3. Colombel JF, Cortot A, Neut C, Romond C. 1987. Yogurt with Bifidobacterium longum reduces erythomycin induced gastrointestinal effect. Lancet 2: 43-48.
  4. Darget KI, Skjak-Braek G, Smidsrod O. 1997. Alginate based new materials. Int. J. Biol. Macromol. 21: 47-55. https://doi.org/10.1016/S0141-8130(97)00040-8
  5. Decho AW. 1999. Imaging on alginate polymer gel matrix using atomic force microscopy. Carbohydr. Res. 315: 330-333. https://doi.org/10.1016/S0008-6215(99)00006-3
  6. Deya E, Amaya M, Nojiri K, Igarashi S. 1982. Studies on the application of galactosyl lactose for infant formula. Yukijirushi Nyugyo Giiyatsu Kenkyusho Hokoku 79: 19-26.
  7. Fuller R. 1992. Probiotics-The scientific Basis. Champman & Hall, London, UK, pp. 355-376.
  8. Guven KC, Ozsoy Y, Ulutin ON. 1991. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and glainic acid. Botan. Marin. 34: 429-435.
  9. Haug A, Larsen B, Smidsrod O. 1966. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20: 183-190. https://doi.org/10.3891/acta.chem.scand.20-0183
  10. Haug A, Larsen B, Smidsrod O. 1967. Studies on the sequence of uronic acid residues in alginic acid. Acta Chem. Scand. 21: 691-704. https://doi.org/10.3891/acta.chem.scand.21-0691
  11. Hirst EL, Percival E, Wold JK. 1964. The structure of alginic acid. Part IV. Partial hydrolysis of the reduced polysaccharide. J. Chem. Soc. 8: 1493.
  12. Jackson P. 1996. The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol. Biotechnol. 5: 101-123. https://doi.org/10.1007/BF02789060
  13. Joo DS, Lee JS, Park JJ, Cho SY, Kim HK, Lee EH. 1996. Preparation of oligosaccharides from alginic acid enzymatic hydrolysis. Korean J. Food Sci. Technol. 28: 146-151.
  14. Kawada A, Hiura N, Shiraiwa M, Tajima S, Hiruma M, Hara K, Ishibashi A, Takahara H. 1997. Stimulation of human keratinocyte growth by alginate ohgosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Letters 408: 43-46. https://doi.org/10.1016/S0014-5793(97)00386-4
  15. Kim HS, Lee CG, Lee EY. 2011a. Alginate lyase: structure, property, and application. Biotechnol, Bioprocess, Eng. 16: 843-851. https://doi.org/10.1007/s12257-011-0352-8
  16. Kim JH, Kim YH, Kim SK, Kim BW, Nam SW. 2011b. Properties and industrial applications of seaweed polysaccharidesdegrading enzymes from the marine microorganisms. Korean J. Microbiol. Biotechnol. 39: 189-199.
  17. Lee. JH, and Lee EY. 2003. Isolation of alginate degrading marine bacteria and characterization of alginase. J. Life Sci. 23: 718-722.
  18. McCleary BV. 1982. Purification and properties of a mannoside mannohydrolase from sugar. Cabohydr. Res. 101: 74-79.
  19. Miller GL. 1959. Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal, Chem, 31: 426-428. https://doi.org/10.1021/ac60147a030
  20. Ostgaard K. 1992. Enzymatic microassay for the determination and characterization of alginates. Carbohydr. Polym. 19: 51-59. https://doi.org/10.1016/0144-8617(92)90054-T
  21. Panikkar R, Brasch D. 1996. Composition and block structure of alginates from New Zealand brown seaweeds. Carbohydr. Res. 293: 119-132. https://doi.org/10.1016/0008-6215(96)00193-0
  22. Penman A, Sanderson GR. 1972. A method for the determination of uronic acid sequence in alginates. Carbohydr. Res. 25: 273-282. https://doi.org/10.1016/S0008-6215(00)81637-7
  23. Ryu BH, Cho SH, Ha SW, Park KM, Kang KH. 1998. Changes of the intestinal microflora and fecal properties by intake of yoghurt added capsulated or uncapsulated Bifidobacteria. Kor. J. Appl. Microbiol, Biotechnol. 26: 221-225.
  24. Schagger H. 2006. Tricine-SDS PAGE. Nature Protocols 1: 16-22. https://doi.org/10.1038/nprot.2006.4
  25. Skjak-Braek G, Grasdalen H, Smidsrod O. 1989. Inhomogeneous polysaccharide ionic gels. Carbohydr. Polm. 10: 31-54. https://doi.org/10.1016/0144-8617(89)90030-1
  26. Sutherland IW. 1995. Polysaccharide lyases. Microbiol. Rev. 16: 323-347.
  27. Tajima S, Inoue H, Kawada A, Ishibashi A, Takahara H, Hiura N. 1999. Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro. Arch. Dermatol. Res. 291: 432-436. https://doi.org/10.1007/s004030050434
  28. Toba T. 1985. ${\beta}$-galactosidase-its application to lactose hydrolysis and galacto-oligosaccharides product. Japan. J. Dairy Food Sci. 34: 169-182.