DOI QR코드

DOI QR Code

초고강도 섬유보강 콘크리트 분절형 박스거더의 연성 거동

Ductile Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder

  • 정민선 ((주) 씨알디) ;
  • 박성용 (한국건설기술연구원 구조융합연구소) ;
  • 한상묵 (금오공과대학교 토목공학과)
  • 투고 : 2017.08.17
  • 심사 : 2017.09.07
  • 발행 : 2017.09.30

초록

압축강도 160MPa와 길이 15.4m를 가진 초고강도 섬유보강 분절 박스거더에 대한 휨거동 실험을 수행하였다. 실험 변수로는 PS강재의 면적, 강섬유 혼입률과 복부와 상부 플랜지의 종방향 철근이다. 하부플랜지의 두 개 텐던에 16개, 12개, 7개씩을 배치하고, 강섬유 혼입률은 2.0%, 1.5%, 1%를 사용하였다. 하부에 32개의 강연선을 배근한 박스거더는 과보강 강재 거동을 보였으며, 24개의 강연선을 배근한 거더는 강연선 32개를 설치한 거더와 비슷한 최대하중을 보이면서 처짐이 많은 저보강 강재 거동을 보였다. 강연선을 14개 설치한 박스거더는 24개 설치한 거더 내하력의 1/2정도 최대하중을 보이며, 연성거동을 보이고 있다. 설계기준의 강재지수에 따른 보 파괴거동의 분류에 대한 식의 유효성을 검토한 결과 지수 판별식은 초고강도 박스거더의 거동을 정확하게 반영하지 못하고 있으며, 박스거더의 기하학적 형태를 세부적으로 고려하고, 강재의 변형률 0.005에 해당하는 기준값을 새로 산정해야할 것으로 판단된다.

The flexural behavior tests of UHPC segmental Box girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are area of prestressing wires, volume fraction of steel fibers and longitudinal reinforcing bars in upper flange and web. PS tendons which has 32 strands of 15.2mm diameter in lower flange, 24 strands and 14 strands in lower flange were arranged and volume fraction of 2%, 1.5% and 1.0% is used in box girder concrete. UHPFRC box girder which has 32 strands in lower flange showed the over reinforcement and brittle behavior. UHPFRC box girder which has 24 strands showed the similar peak load as 32 strands girder and ductile behavior as large deflection. UHPFRC box girder which has 14 strands showed half of the peak load of 24 strands box girder and ductile behavior. After the application of the formular for the reinforcement index to the behavior of the UHPFRC box girders, reinforcement index does not determine the characteristic of behavior of UHPFRC box girder exactly. So the index should consider the dimension precisely and modify the reference value corresponding to the 0.005 strain of the prestressing strands.

키워드

참고문헌

  1. AFGC. (2013). Document Scientifiques et Techniques, Ultra High Performance Fiber-Reinforced Concrete, Recommendations, 82-89.
  2. American Concrete Institute. (2011). Building Code Requirement for Structural Code(ACI 318M-11), 296.
  3. Chan, S.Y., Feng, N.Q., Tsang, M.K. (2000). Durability of high strenth concrete incorporating carrier fludifying agent, Magazine of Concrete Research, 52(4), 235-242. https://doi.org/10.1680/macr.2000.52.4.235
  4. Han, S.M., An, J.W. (2015). The ductile behavior test of ultra high performance fiber reinforced concrete rectangular beam by combination of the fiber and group of reinforcing bars, Journal of the Korea Institute of Structural Maintenance and Inspection, 19(3), 139-148 [in Korean]. https://doi.org/10.11112/jksmi.2015.19.3.139
  5. Manning. Mark P, Weldon, Brad D, McGunnis, Michael J. David V, Newtson, Craig M. (2016). Locally developed ultra high performance concrete: behavior analysis of prestressed channel girders, UHPC Symposium_Kassel, Hiper Mat16.
  6. Richard, P., Cheyrezy, M. (1995). Composition of reactive powder concrete, Cement and Research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  7. Simone, Sturwald., Ekkehard, Fehling. (2016). Design of Reinforced UHPFRC in Flexure, 3rd UHPC Symposium Proceedings, Kassel 2016.