참고문헌
- Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
- Ansari, R., Gholami, R. and Sahmani, S. (2013), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83, 1439-1449. https://doi.org/10.1007/s00419-013-0756-3
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Berrabah, H. M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Bouderba, B., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
- Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37, 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Model., 218, 7406-7420.
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 1-10.
- Ebrahimi, F. and Barati, M.R. (2017b), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721
- Ebrahimi, F. and Barati, M.R. (2017c), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021
- Ebrahimi, F. and Barati, M.R. (2017d), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
- Ebrahimi, F. and Barati, M.R. (2017e), "A modified nonlocal couple stress based beam model for vibration analysis of higherorder FG nanobeams", Mech. Adv. Mater. Struct. (accepted)
- Ebrahimi, F. and Barati, M.R. (2017f), "Scale-dependent effects on wave propagation in magnetically affected single/doublelayered compositionally graded nanosize beams", Wave. Random Complex Media, 1-17.
- Ebrahimi, F. and Barati, M.R. (2017g), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406217713518.
- Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51, 223-249. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F. and Jafari, A. (2016a), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59, 343-371. https://doi.org/10.12989/sem.2016.59.2.343
- Ebrahimi, F. and Jafari, A. (2016b), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, Article ID 9561504, 20.
- Ebrahimi, F. and Daman, M. (2016), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 2016, Article ID 9848343, 11.
- Ebrahimi, F. and Daman, M. (2016), "An investigation of radial vibration modes of embedded double-curved-nanobeamsystems", Cankaya Univ. J. Sci. Eng., 13, 58-79.
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H., Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29, 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
- Ebrahimi, F. and Barati, M.R. (2016b), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Euro. Phys. J. Plus, 131, 346. https://doi.org/10.1140/epjp/i2016-16346-5
- Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions", Smart Struct. Syst., 18(6), 1087-1109. https://doi.org/10.12989/sss.2016.18.6.1087
- Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Euro. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3
- Ebrahimi, F. and Salari, E. (2016a), "Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams", Appl. Phys. A, 122(9), 793. https://doi.org/10.1007/s00339-016-0273-7
- Ebrahimi, F. and Salari, E. (2016b), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197
- Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringens nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/ANR.2017.5.2.179
- Hosseini, S. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122, 1-11.
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Kananipour, H., Ahmadi, M. and Chavoshi, H. "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solid. Struct., 11, 848-853, 2014. https://doi.org/10.1590/S1679-78252014000500007
- Malekzadeh, P., Haghighi, M.G. and Atashi, M. (2010), "Out-ofplane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92, 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2010), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media.
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Setoodeh, A., Derahaki, M. and Bavi, N. (2015), "DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory", Latin Am. J. Solid. Struct., 12, 1901-1917. https://doi.org/10.1590/1679-78251894
- Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
- Touloukian, Y.S. (1966), "Thermophysical properties of high temperature solid materials, Volume 6, intermetallics, cermets, polymers, and composite systems, Part II. cermets, polymers, composite systems", Dtic Document.
- Wang, C.M. and Duan, W. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104, 014303. https://doi.org/10.1063/1.2951642
- Wattanasakulpong, N., Prusty, B. G., Kelly, D. W. and Hoffman, M. "Free vibration analysis of layered functionally graded beams with experimental validatio", Mater. Des., 36, 182-190.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32, 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory", Chebyshev Coll. Meth., Meccanica, 50, 1331-1342.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53, 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44, 365301. https://doi.org/10.1088/0022-3727/44/36/365301
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
피인용 문헌
- A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2017, https://doi.org/10.1007/s40430-019-1799-3
- Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment vol.16, pp.3, 2017, https://doi.org/10.2140/jomms.2021.16.371
- Exact third-order static and free vibration analyses of functionally graded porous curved beam vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.001