References
- Bahari, A. and Popplewell, N. (2015), "Comment on „transient response of an acoustic medium by an excited submerged spherical shell‟ (J. Acoust. Soc. Am., 109(6), 2789-2796 (2001)) (L)", J. Acoust. Soc. Am., 137(5), 2966-2969. https://doi.org/10.1121/1.4919293
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23, 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Boukhari, A., Atmane, H.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57, 837-859. https://doi.org/10.12989/sem.2016.57.5.837
- Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Comput. Mech., 48, 175-193. https://doi.org/10.1007/s00466-011-0591-8
- Cao, X. and Hua, H. (2012), "Sound radiation from shear deformable stiffened laminated plates with multiple compliant layers", J. Vib. Acoust., 134(5), 051001-051001-12. https://doi.org/10.1115/1.4006233
- Cao, X., Hua, H. and Ma C. (2012), "Acoustic radiation from shear deformable stiffened laminated cylindrical shells", J. Sound Vib., 331(3), 651-670. https://doi.org/10.1016/j.jsv.2011.10.006
- Cao, X., Ma, C. and Hua, H. (2013), "Acoustic radiation from thick laminated cylindrical shells with sparse cross stiffeners", J. Vib. Acoust., 135(3), 031009-031009-10. https://doi.org/10.1115/1.4023142
- Cao, X.T., Shi, L., Zhang, X.S. and Jiang, G.H. (2013), "Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer", Smart. Mater. Struct., 22(6), 065003. https://doi.org/10.1088/0964-1726/22/6/065003
- Caresta, M. and Kessissoglou, N.J. (2010), "Acoustic signature of a submarine hull under harmonic excitation", Appl. Acoust., 71(1), 17-31. https://doi.org/10.1016/j.apacoust.2009.07.008
- Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound Vib., 191(4), 491-504. https://doi.org/10.1006/jsvi.1996.0136
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- Damodaran, A., Lessard, L. and Suresh, B.A. (2015), "An overview of fibre-reinforced composites for musical instrument soundboards", Acoust. Aust., 43(1), 117-122. https://doi.org/10.1007/s40857-015-0008-5
- Daneshjou, K., Nouri, A. and Talebitooti, R. (2007), "Sound transmission through laminated composite cylindrical shells using analytical model", Arch. Appl. Mech., 77(6), 363-379. https://doi.org/10.1007/s00419-006-0096-7
- Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
- Everstine, G.C. and Henderson, F.M. (1990), "Coupled finite element/boundary element approach for fluid-structure interaction", J. Acoust. Soc. Am., 87(5), 1938. https://doi.org/10.1121/1.399320
- Golub, M.V., Fomenko, S.I., Bui, T.Q., Zhang, C. and Wang, Y.S. (2012), "Transmission and band gaps of elastic SH waves in functionally graded periodic laminates", Int. J. Solid. Struct., 49, 344-354. https://doi.org/10.1016/j.ijsolstr.2011.10.013
- Graham, W.R. (1995), "The influence of curvature on the sound radiated by vibrating panels", J. Acoust. Soc. Am., 98(3), 1581-1595. https://doi.org/10.1121/1.413424
- Guo, Y.P. (1994), "Radiation from cylindrical shells driven by onsurface forces", J. Acoust. Soc. Am., 95(4), 2014-2021. https://doi.org/10.1121/1.408664
- Hasheminejad, S.M. and Ahamdi-Savadkoohi, A. (2010), "Vibroacoustic behavior of a hollow FGM cylinder excited by onsurface mechanical drives", Compos. Struct., 92(1), 86-96. https://doi.org/10.1016/j.compstruct.2009.06.014
- Hasheminejad, S.M. and Alaei-Varnosfaderani, M. (2013), "Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder", J. Vib. Control, 20(14), 2202-2220. https://doi.org/10.1177/1077546313483787
- Hasheminejad, S.M., Malakooti, S. and Akbarzadeh, H.M. (2011), "Acoustic radiation from a submerged hollow FGM sphere", Arch. Appl. Mech., 81(12), 1889-902. https://doi.org/10.1007/s00419-011-0525-0
- Hedayatrasa, S., Bui, T.Q., Zhang, C. and Lim, C.W. (2014), "Numerical modelling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements", J. Comput. Phys., 258, 381-404. https://doi.org/10.1016/j.jcp.2013.10.037
- Jeans, R.A. and Mathews, I.C. (1990), "Solution of fluid-structure interaction problems using coupled finite element and variational boundary element technique", J. Acoust. Soc. Am., 88(5), 2459-2466. https://doi.org/10.1121/1.400086
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(03), 525-541. https://doi.org/10.1142/S1758825111001111
- Johnson, W.M. and Cunefare, K.A. (2002), "Structural acoustic optimization of a composite cylindrical shell using FEM/BEM", J. Vib. Acoust., 124(3), 410-3. https://doi.org/10.1115/1.1473829
- Li, S. and Li, X. (2008), "The effects of distributed masses on acoustic radiation behavior of plates", Appl. Acoust., 69(3), 272-279. https://doi.org/10.1016/j.apacoust.2006.11.004
- Li, T.Y., Miao, Y.Y., Ye, W.B., Zhu, X. and Zhu, X.M. (2014), "Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface", J. Acoust. Soc. Am., 136(3), 1054-1064. https://doi.org/10.1121/1.4890638
- Liu, J., Zuo, B. and Gao, W. (2015), "Neural network methods applicable to predict the noise reduction ability of nonwoven sandwich absorbers", Acoust. Aust., 43(1), 129-133. https://doi.org/10.1007/s40857-015-0002-y
- Liu, S., Yu, T., Bui, T.Q., Yin, S., Thai, D.K. and Tanaka, S. (2017), "Analysis of functionally graded plates by a simple locking-free quasi-3D hyperbolic plate isogeometric method", Compos. Part B, 120, 182-196. https://doi.org/10.1016/j.compositesb.2017.03.061
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mariem, J.B. and Hamdi, M.A. (1987), "A new boundary finite element method for fluid-structure interaction problems", Int. J. Numer. Meth. Eng., 24, 1251-67. https://doi.org/10.1002/nme.1620240703
- Mellow, T. and Karkkainen, L. (2008), "On the sound field of a shallow spherical shell in an infinite baffle", J. Acoust. Soc. Am., 123(4), 1880-1891. https://doi.org/10.1121/1.2839891
- Nowak, L.J. and Zielinski, T.G. (2015), "Determination of the free-field acoustic radiation characteristics of the vibrating plate structures with arbitrary boundary conditions", J. Vib. Acoust., 137, 051001-1-051001-8. https://doi.org/10.1115/1.4030214
- Peters, H., Kessissoglou, N. and Marburg, S. (2013), "Modal decomposition of exterior acoustic-structure interaction", J. Acoust. Soc. Am., 133(5), 2668-2677. https://doi.org/10.1121/1.4796114
- Qu, Y. and Meng, G. (2015), "Vibro-acoustic analysis of multilayered shells of revolution based on a general higherorder shear deformable zig-zag theory", Compos. Struct., 134, 689-707. https://doi.org/10.1016/j.compstruct.2015.08.053
- Qu, Y. and Meng, G. (2016), "Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids", J. Sound Vib., 376, 112-113. https://doi.org/10.1016/j.jsv.2016.04.023
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Sheng, L. (2011), "Modal models for vibro-acoustic response analysis of fluid-loaded plates", J. Vib. Control, 17(10), 1540-1546. https://doi.org/10.1177/1077546310386274
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Bedia, E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Tournour, M. and Atalla, N. (1988), "Vibroacoustic behavior of an elastic box using state-of-the-art FEM-BEM approach", Noise Control Eng. J., 46(3), 83-90. https://doi.org/10.3397/1.2828460
- Wang, C. and Lai, J.C. (2000), "The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation I: Theoretical analysis", J. Sound Vib., 232(2), 431-447. https://doi.org/10.1006/jsvi.1999.2749
- Wu, C.J., Chen, H.L. and Huang, X.Q. (1999), "Vibroacoustic analysis of a fluid-loaded cylindrical shell excited by a rotating load", J. Sound Vib., 225(1), 79-94. https://doi.org/10.1006/jsvi.1999.2233
- Xiongwei, Y., Cheng, W., Yueming, L. and Guirong, Y. (2011), "Vibro-acoustic response of a thermally stressed reinforced conical shell", Adv. Sci. Lett., 4, 1-5. https://doi.org/10.1166/asl.2011.1204
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Comput. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028
- Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Tanaka, S. (2016), "Inplane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B, 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008
- Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008
- Zakout, U. (2001), "Transient response of an acoustic medium by an excited submerged spherical shell", J. Acoust. Soc. Am., 109(6), 2789-2796. https://doi.org/10.1121/1.1369104
- Zhang, C., Curiel-Sosa, J.L. and Bui, T.Q. (2017), "A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites", Comp. Struct., 163, 32-43. https://doi.org/10.1016/j.compstruct.2016.12.042
- Zhao, X., Geng, Q. and Li, Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353
- Zhao, X., Zhang, B. and Li, Y. (2015), "Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment", J. Vib. Control, 23(4), 1-20.
- Zidia, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2017, https://doi.org/10.12989/was.2019.29.6.371
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2017, https://doi.org/10.12989/scs.2021.38.1.033
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.263