DOI QR코드

DOI QR Code

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin (School of Mechanical Engineering, KIIT University) ;
  • Mahapatra, Trupti R. (School of Mechanical Engineering, KIIT University) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, NIT Rourkela)
  • Received : 2017.04.29
  • Accepted : 2017.07.16
  • Published : 2017.10.10

Abstract

The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

Keywords

References

  1. Bahari, A. and Popplewell, N. (2015), "Comment on „transient response of an acoustic medium by an excited submerged spherical shell‟ (J. Acoust. Soc. Am., 109(6), 2789-2796 (2001)) (L)", J. Acoust. Soc. Am., 137(5), 2966-2969. https://doi.org/10.1121/1.4919293
  2. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  3. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  4. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  5. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23, 423-431. https://doi.org/10.1080/15376494.2014.984088
  6. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  7. Boukhari, A., Atmane, H.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57, 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  8. Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Comput. Mech., 48, 175-193. https://doi.org/10.1007/s00466-011-0591-8
  9. Cao, X. and Hua, H. (2012), "Sound radiation from shear deformable stiffened laminated plates with multiple compliant layers", J. Vib. Acoust., 134(5), 051001-051001-12. https://doi.org/10.1115/1.4006233
  10. Cao, X., Hua, H. and Ma C. (2012), "Acoustic radiation from shear deformable stiffened laminated cylindrical shells", J. Sound Vib., 331(3), 651-670. https://doi.org/10.1016/j.jsv.2011.10.006
  11. Cao, X., Ma, C. and Hua, H. (2013), "Acoustic radiation from thick laminated cylindrical shells with sparse cross stiffeners", J. Vib. Acoust., 135(3), 031009-031009-10. https://doi.org/10.1115/1.4023142
  12. Cao, X.T., Shi, L., Zhang, X.S. and Jiang, G.H. (2013), "Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer", Smart. Mater. Struct., 22(6), 065003. https://doi.org/10.1088/0964-1726/22/6/065003
  13. Caresta, M. and Kessissoglou, N.J. (2010), "Acoustic signature of a submarine hull under harmonic excitation", Appl. Acoust., 71(1), 17-31. https://doi.org/10.1016/j.apacoust.2009.07.008
  14. Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound Vib., 191(4), 491-504. https://doi.org/10.1006/jsvi.1996.0136
  15. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  16. Damodaran, A., Lessard, L. and Suresh, B.A. (2015), "An overview of fibre-reinforced composites for musical instrument soundboards", Acoust. Aust., 43(1), 117-122. https://doi.org/10.1007/s40857-015-0008-5
  17. Daneshjou, K., Nouri, A. and Talebitooti, R. (2007), "Sound transmission through laminated composite cylindrical shells using analytical model", Arch. Appl. Mech., 77(6), 363-379. https://doi.org/10.1007/s00419-006-0096-7
  18. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  19. Everstine, G.C. and Henderson, F.M. (1990), "Coupled finite element/boundary element approach for fluid-structure interaction", J. Acoust. Soc. Am., 87(5), 1938. https://doi.org/10.1121/1.399320
  20. Golub, M.V., Fomenko, S.I., Bui, T.Q., Zhang, C. and Wang, Y.S. (2012), "Transmission and band gaps of elastic SH waves in functionally graded periodic laminates", Int. J. Solid. Struct., 49, 344-354. https://doi.org/10.1016/j.ijsolstr.2011.10.013
  21. Graham, W.R. (1995), "The influence of curvature on the sound radiated by vibrating panels", J. Acoust. Soc. Am., 98(3), 1581-1595. https://doi.org/10.1121/1.413424
  22. Guo, Y.P. (1994), "Radiation from cylindrical shells driven by onsurface forces", J. Acoust. Soc. Am., 95(4), 2014-2021. https://doi.org/10.1121/1.408664
  23. Hasheminejad, S.M. and Ahamdi-Savadkoohi, A. (2010), "Vibroacoustic behavior of a hollow FGM cylinder excited by onsurface mechanical drives", Compos. Struct., 92(1), 86-96. https://doi.org/10.1016/j.compstruct.2009.06.014
  24. Hasheminejad, S.M. and Alaei-Varnosfaderani, M. (2013), "Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder", J. Vib. Control, 20(14), 2202-2220. https://doi.org/10.1177/1077546313483787
  25. Hasheminejad, S.M., Malakooti, S. and Akbarzadeh, H.M. (2011), "Acoustic radiation from a submerged hollow FGM sphere", Arch. Appl. Mech., 81(12), 1889-902. https://doi.org/10.1007/s00419-011-0525-0
  26. Hedayatrasa, S., Bui, T.Q., Zhang, C. and Lim, C.W. (2014), "Numerical modelling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements", J. Comput. Phys., 258, 381-404. https://doi.org/10.1016/j.jcp.2013.10.037
  27. Jeans, R.A. and Mathews, I.C. (1990), "Solution of fluid-structure interaction problems using coupled finite element and variational boundary element technique", J. Acoust. Soc. Am., 88(5), 2459-2466. https://doi.org/10.1121/1.400086
  28. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(03), 525-541. https://doi.org/10.1142/S1758825111001111
  29. Johnson, W.M. and Cunefare, K.A. (2002), "Structural acoustic optimization of a composite cylindrical shell using FEM/BEM", J. Vib. Acoust., 124(3), 410-3. https://doi.org/10.1115/1.1473829
  30. Li, S. and Li, X. (2008), "The effects of distributed masses on acoustic radiation behavior of plates", Appl. Acoust., 69(3), 272-279. https://doi.org/10.1016/j.apacoust.2006.11.004
  31. Li, T.Y., Miao, Y.Y., Ye, W.B., Zhu, X. and Zhu, X.M. (2014), "Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface", J. Acoust. Soc. Am., 136(3), 1054-1064. https://doi.org/10.1121/1.4890638
  32. Liu, J., Zuo, B. and Gao, W. (2015), "Neural network methods applicable to predict the noise reduction ability of nonwoven sandwich absorbers", Acoust. Aust., 43(1), 129-133. https://doi.org/10.1007/s40857-015-0002-y
  33. Liu, S., Yu, T., Bui, T.Q., Yin, S., Thai, D.K. and Tanaka, S. (2017), "Analysis of functionally graded plates by a simple locking-free quasi-3D hyperbolic plate isogeometric method", Compos. Part B, 120, 182-196. https://doi.org/10.1016/j.compositesb.2017.03.061
  34. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  35. Mariem, J.B. and Hamdi, M.A. (1987), "A new boundary finite element method for fluid-structure interaction problems", Int. J. Numer. Meth. Eng., 24, 1251-67. https://doi.org/10.1002/nme.1620240703
  36. Mellow, T. and Karkkainen, L. (2008), "On the sound field of a shallow spherical shell in an infinite baffle", J. Acoust. Soc. Am., 123(4), 1880-1891. https://doi.org/10.1121/1.2839891
  37. Nowak, L.J. and Zielinski, T.G. (2015), "Determination of the free-field acoustic radiation characteristics of the vibrating plate structures with arbitrary boundary conditions", J. Vib. Acoust., 137, 051001-1-051001-8. https://doi.org/10.1115/1.4030214
  38. Peters, H., Kessissoglou, N. and Marburg, S. (2013), "Modal decomposition of exterior acoustic-structure interaction", J. Acoust. Soc. Am., 133(5), 2668-2677. https://doi.org/10.1121/1.4796114
  39. Qu, Y. and Meng, G. (2015), "Vibro-acoustic analysis of multilayered shells of revolution based on a general higherorder shear deformable zig-zag theory", Compos. Struct., 134, 689-707. https://doi.org/10.1016/j.compstruct.2015.08.053
  40. Qu, Y. and Meng, G. (2016), "Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids", J. Sound Vib., 376, 112-113. https://doi.org/10.1016/j.jsv.2016.04.023
  41. Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  42. Sheng, L. (2011), "Modal models for vibro-acoustic response analysis of fluid-loaded plates", J. Vib. Control, 17(10), 1540-1546. https://doi.org/10.1177/1077546310386274
  43. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Bedia, E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  44. Tournour, M. and Atalla, N. (1988), "Vibroacoustic behavior of an elastic box using state-of-the-art FEM-BEM approach", Noise Control Eng. J., 46(3), 83-90. https://doi.org/10.3397/1.2828460
  45. Wang, C. and Lai, J.C. (2000), "The sound radiation efficiency of finite length acoustically thick circular cylindrical shells under mechanical excitation I: Theoretical analysis", J. Sound Vib., 232(2), 431-447. https://doi.org/10.1006/jsvi.1999.2749
  46. Wu, C.J., Chen, H.L. and Huang, X.Q. (1999), "Vibroacoustic analysis of a fluid-loaded cylindrical shell excited by a rotating load", J. Sound Vib., 225(1), 79-94. https://doi.org/10.1006/jsvi.1999.2233
  47. Xiongwei, Y., Cheng, W., Yueming, L. and Guirong, Y. (2011), "Vibro-acoustic response of a thermally stressed reinforced conical shell", Adv. Sci. Lett., 4, 1-5. https://doi.org/10.1166/asl.2011.1204
  48. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  49. Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Comput. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028
  50. Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Tanaka, S. (2016), "Inplane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B, 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008
  51. Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008
  52. Zakout, U. (2001), "Transient response of an acoustic medium by an excited submerged spherical shell", J. Acoust. Soc. Am., 109(6), 2789-2796. https://doi.org/10.1121/1.1369104
  53. Zhang, C., Curiel-Sosa, J.L. and Bui, T.Q. (2017), "A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites", Comp. Struct., 163, 32-43. https://doi.org/10.1016/j.compstruct.2016.12.042
  54. Zhao, X., Geng, Q. and Li, Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353
  55. Zhao, X., Zhang, B. and Li, Y. (2015), "Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment", J. Vib. Control, 23(4), 1-20.
  56. Zidia, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2017, https://doi.org/10.12989/was.2019.29.6.371
  2. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2017, https://doi.org/10.12989/scs.2021.38.1.033
  3. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.263