Acknowledgement
Supported by : National Natural Science Foundation of China, South China Agricultural University
References
- Ambartsumyan, C.A., Wu, R.F. and Zhang, Y.Z. (1986), Different Modulus of Elasticity Theory, China Railway Publishing House, China.
- Bertoldi, K., Bigoni, D. and Drugan, W. J. (2008), "Nacre: An orthotropic and bimodular elastic material", Compos. Sci. Technol., 68(6), 1363-1375. https://doi.org/10.1016/j.compscitech.2007.11.016
- Chandrashekhara, K. and Bhimaraddi, A. (1982), "Elasticity solution for a long circular sandwich cylindrical shell subjected to axisymmetric load", Int. J. Solid. Struct., 18(7), 611-618. https://doi.org/10.1016/0020-7683(82)90043-9
- Fang, X., Yu, S.Y., Wang, H.T. and Li, C.F. (2014), "The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges", Nucl. Eng. Des., 276(2), 9-18. https://doi.org/10.1016/j.nucengdes.2014.05.036
- Geim, A.K. (2009), "Graphene: status and prospects", Sci., 324(5934), 1530-1534. https://doi.org/10.1126/science.1158877
- Gilbert, G.N.J. (1961), "Stress/strain properties of cast iron and Poisson's ratio in tension and compression", Brit. Cast Res. Assn. J., 9, 347-363.
- Green, A.E. and Mkrtichian, J.Z. (1977), "Elastic solids with different moduli in tension and compression", J. Elasticity, 7(4), 369-386. https://doi.org/10.1007/BF00041729
- Guo, Z.H. and Zhang, X.Q. (1987), "Investigation of complete stress-deformation curves for concretes in tension", ACI Mater. J., 84(4), 278-285.
- He, X.T., Chen, Q., Sun, J.Y. and Chen, S.L. (2010), "Application of Kirchhoff hypotheses to bending thin plates with different moduli in tension and compression", J. Mech. Mater. Struct. 5(5), 755-769. https://doi.org/10.2140/jomms.2010.5.755
- He, X.T., Chen, Q., Sun, J.Y. and Zheng, Z.L. (2012), "Largedeflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression", Int. J. Mech. Sci., 62(1), 103-110. https://doi.org/10.1016/j.ijmecsci.2012.06.003
- He, X.T., Chen, S.L. and Sun, J.Y. (2007), "Applying the equivalent section method to solve beam subjected to lateral force and bend-compression column with different moduli", Int. J. Mech. Sci., 49(7), 919-924. https://doi.org/10.1016/j.ijmecsci.2006.11.004
- He, X.T., Hu, X.J., Sun, J.Y. and Zheng, Z.L. (2010), "An analytical solution of bending thin plates with different moduli in tension and compression", Struct. Eng. Mech., 36(3), 363-380. https://doi.org/10.12989/sem.2010.36.3.363
- He, X.T., Xu, P., Sun, J.Y. and Zheng, Z.L. (2015), "Analytical solutions for bending curved beams with different moduli in tension and compression", Mech. Adv. Mater. Struct., 22(5), 325-337. https://doi.org/10.1080/15376494.2012.736053
- He, X.T., Zheng, Z.L., Sun, J.L., Li, Y.M. and Chen, S.L. (2009), "Convergence analysis of a finite element method based on different moduli in tension and compression", Int. J. Solid. Struct., 46(20), 3734-3740. https://doi.org/10.1016/j.ijsolstr.2009.07.003
- Jones, R.M. (1971), "Buckling of circular cylindrical shells with different moduli in tension and compression", AIAA J., 9(1), 53-61. https://doi.org/10.2514/3.6124
- Jones, R.M. (1971), "Buckling of stiffened multilayered circular cylindrical shells with different orthotropic moduli in tension and compression", AIAA J., 9(5), 917-923. https://doi.org/10.2514/3.6296
- Kamiya, N. (1977), "Thermal stress in a bi-modulus thick cylinder", Nucl. Eng. Des., 40, 383-391. https://doi.org/10.1016/0029-5493(77)90047-4
- Leal, A.A., Deitzel, J.M. and Gillespie, Jr J.W. (2009), "Compressive strength analysis for high performance fibers with different modulus in tension and compression", J. Compos. Mater., 43(6), 661-674. https://doi.org/10.1177/0021998308088589
- Li, H., Fok, S.L. and Marsden, B. J. (2008), "An analytical study on the irradiation-induced stresses in nuclear graphite moderator bricks", J. Nucl. Mater., 372(2-3), 164-170. https://doi.org/10.1016/j.jnucmat.2007.03.041
- Liu, X.B. and Meng, Q.C. (2002), "On the convergence of finite element method with different extension-compression elastic modulus", J. Beijing Univ. Aeronaut. Astronaut., 28(2), 232-234.
- Liu, X.B.and Zhang, Y.Z. (2000), "Modulus of elasticity in shear and accelerate convergence of different extension-compression elastic modulus finite element method", J. Dalian Univ. Technol., 40(5), 527-530.
- Medri, G. (1982), "A nonlinear elastic model for isotropic materials with different behavior in tension and compression", J. Eng. Mater. Technol., 16(104), 26-28.
- Patel, B.P., Khan, K. and Nath, Y. (2014), "A new constitutive model for bimodular laminated structures: Application to free vibrations of conical/cylindrical panels", Compos. Struct., 110, 183-191. https://doi.org/10.1016/j.compstruct.2013.11.008
- Shapiro, G.S. (1971), "Deformation of bodies with different tensile and compressive strengths (stiffnesses)", Mech. Solid., 22(5), 82-89.
- Shi, J. and Gao, Z.L. (2015), "Ill-loaded layout optimization of bimodulus material", Finite Elem. Anal. Des., 95, 51-61. https://doi.org/10.1016/j.finel.2014.10.005
- Shi, J., Cai, K. and Qin, Q.H. (2014), "Topology optimization for human proximal femur considering bi-modulus behavior of cortical bones", MBC: Mol. Cell. Biomech., 11(4), 235-248.
- Timoshenko, S. (1941), Strength of Materials, Part II: Advanced Theory and Problems, 2nd Edition, Van Nostrand , USA.
- Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A.C., Geim, A.K., ... and Galiotis, C. (2009), "Subjecting a graphene monolayer to tension and compression", Small, 5(21), 2397-2402. https://doi.org/10.1002/smll.200900802
- Vijayakumar, K. and Rao, K P. (1987), "Stress-strain relation for composites with different stiffnesses in tension and compression", Comput. Mech., 2(3), 167-175. https://doi.org/10.1007/BF00571022
- Wu, X., Yang, L.J., Huang, C. and Sun, J. (2010), "Large deflection bending calculation and analysis of bi-modulus rectangular plate", Eng. Mech., 27(1), 17-22.
- Yang, H.T. and Zhu, Y.L. (2006), "Solving elasticity problems with bi-modulus via a smoothing technique", Chin. J. Comput. Mech., 23(1), 19-23.
- Yang, H.T., Wu, R.F., Yang, K.J. and Zhang, Y.Z. (1992), "Solution to problem of dual extension-compression elastic modulus with initial stress method", J. Dalian Univ. Technol., 32(1), 35-39.
- Yao, W.J. and Ma, J.W. (2013), "Semi-analytical buckling solution and experimental study of variable cross-section rod with different moduli", J. Eng. Mech. Div., ASCE, 139(9), 1149-1157. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000473
- Yao, W.J. and Ye, Z.M. (2004), "Analytical solution for bending beam subject to lateral force with different modulus", J. Appl. Math. Mech. (Engl. Transl.), 25(10), 1107-1117.
- Yao, W.J. and Ye, Z.M. (2004), "Analytical solution of bendingcompression column using different tension-compression modulus", J. Appl. Math. Mech. (Engl. Transl.), 25(9), 983-993.
- Yao, W.J. and Ye, Z.M. (2006), "Internal forces for statically indeterminate structures having different moduli", J. Eng. Mech. Div., ASCE, 132(7), 739-746. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:7(739)
- Yao, W.J., Ma, J.W., Gao, J.L. and Qiu, Y.Z. (2015), "Nonlinear large deflection buckling analysis of compression rod with different moduli", Struct. Eng. Mech., 54(5), 855-875. https://doi.org/10.12989/sem.2015.54.5.855
- Yao, W.J., Zhang, C.H. and Jiang, X.F. (2006), "Nonlinear mechanical behavior of combined members with different moduli", Int. J. Nonlin. Sci. Numer. Simul., 7(2), 233-238. https://doi.org/10.1515/IJNSNS.2006.7.2.233
- Ye, Z.M., Yu, H.G. and Yao, W.J. (2001), "A new elasticity and finite element formulation for different Young's modulus when tension and compression loading", J. Shanghai Univ., 5(2), 89-92. https://doi.org/10.1007/s11741-001-0001-0
- Ye, Z.M., Yu, H.R. and Yao, W.Y. (2001), "A finite element formulation for different Young's modulus when tension and compression loading", Combinational and Computational Mathematics Center Conference on Computational Mathematics, Pohang University of Science and Technology, South Korea.
- Zhang, Y.Z. and Wang, Z.F. (1989), "The finite element method for elasticity with different moduli in tension and compression", Chin. J. Comput. Mech., 6(1), 236-246.
- Zhou, J.G. (1981), "Method of calculating the temperature stresses in composite hollow cylinder", J. Build. Struct., 3, 42-55.
- Zhuang, Z. (2009), Finite element analysis and application based on ABAQUS, Tsinghua University Press, Beijing, China.