DOI QR코드

DOI QR Code

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University) ;
  • Daman, Mohsen (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University) ;
  • Fardshad, Ramin Ebrahimi (Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University)
  • 투고 : 2017.02.19
  • 심사 : 2017.05.13
  • 발행 : 2017.10.10

초록

The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

키워드

참고문헌

  1. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  2. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  3. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B: Eng., 60, 158-166. https://doi.org/10.1016/j.compositesb.2013.12.066
  4. Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Physica E: Low-dimens. Syst. Nanostruct., 43(4), 975-978. https://doi.org/10.1016/j.physe.2010.11.031
  5. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  6. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  7. Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials-Application to Al 88- x Y 7 Fe 5 Ti x metallic glasses", Ultramicro., 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010
  8. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  9. Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Euro. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  10. Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  11. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Euro. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  12. Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203
  13. Ebrahimi, F. and Barati, M.R. (2016d), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
  14. Ebrahimi, F. and Barati, M.R. (2016e), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42(5), 1715-172.
  15. Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 1-10.
  16. Ebrahimi, F. and Barati, M.R. (2017b), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721
  17. Ebrahimi, F. and Barati, M.R. (2017c), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021
  18. Ebrahimi, F. and Barati, M.R. (2017d), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
  19. Ebrahimi, F. and Barati, M.R. (2017e), "A modified nonlocal couple stress based beam model for vibration analysis of higherorder FG nanobeams", Mech. Adv. Mater. Struct. (just accepted)
  20. Ebrahimi, F. and Barati, M.R. (2017f), "Scale-dependent effects on wave propagation in magnetically affected single/doublelayered compositionally graded nanosize beams", Wave. Random Complex Media, 1-17.
  21. Ebrahimi, F. and Barati, M.R. (2017h), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  22. Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316. https://doi.org/10.1007/s00339-015-9512-6
  23. Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Euro. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3
  24. Ebrahimi, F. and Daman, M. (2016a), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupl. Syst. Mech., 5(3), 255-267. https://doi.org/10.12989/csm.2016.5.3.255
  25. Ebrahimi, F. and Daman, M. (2016b), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 2016, Article ID 9848343, 11.
  26. Ebrahimi, F. and Daman, M. (2016c), "An investigation of radial vibration modes of embedded double-curved-nanobeam systems", Cankaya Univ. J. Sci. Eng., 13, 058-079.
  27. Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., 5(1), 35-47. https://doi.org/10.12989/anr.2017.5.1.035
  28. Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  29. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  30. Ebrahimi, F. and Salari, E. (2015b). Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  31. Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  32. Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105, 151-181.
  33. Ebrahimi, F. and Salari, E. (2015e), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  34. Ebrahimi, F. and Salari, E. (2015f), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  35. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  36. Ebrahimi, F. and Salari, E. (2016a), "Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams", Appl. Phys. A, 122(9), 793. https://doi.org/10.1007/s00339-016-0273-7
  37. Ebrahimi, F. and Salari, E. (2016b), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197
  38. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringens nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  39. Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions", Smart Struct. Syst., 18(6), 1087-1109. https://doi.org/10.12989/sss.2016.18.6.1087
  40. Ebrahimi, F., & Barati, M. R. (2017g), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406217713518.
  41. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  42. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  43. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccanica, 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
  44. Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "A semianalytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions", Int. J. Struct. Stab. Dyn., 16(06), 1550023. https://doi.org/10.1142/S0219455415500236
  45. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/ANR.2017.5.2.179
  46. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  47. Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Euro. J. Mech. A/Solid., 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
  48. Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
  49. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  50. Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
  51. Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z.L. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868
  52. Jang, T.S., Baek, H.S. and Paik, J.K. (2011), "A new method for the non-linear deflection analysis of an infinite beam resting on a non-linear elastic foundation", Int. J. Nonlin. Mech., 46(1), 339-346. https://doi.org/10.1016/j.ijnonlinmec.2010.09.017
  53. Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solid. Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
  54. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047 https://doi.org/10.1016/j.compstruct.2012.01.023
  55. Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283.
  56. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  57. Li, L. and Hu, Y. (2017a), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
  58. Li, L. and Hu, Y. (2017b), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
  59. Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
  60. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
  61. Liu, H., Han, Y. and Yang, J.L. (2016), "Surface effects on large deflection of a curved elastic nanobeam under static bending", Int. J. Appl. Mech., 8(8), 1650098. https://doi.org/10.1142/S1758825116500988
  62. Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
  63. Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlin. Dyn., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x
  64. Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
  65. Nazemnezhad, R., Salimi, M., Hashemi, S.H. and Sharabiani, P.A. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B: Eng., 43(8), 2893-2897. https://doi.org/10.1016/j.compositesb.2012.07.029
  66. Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
  67. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  68. Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052-1056. https://doi.org/10.1016/j.commatsci.2010.11.001
  69. Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
  70. Sahmani, S., Bahrami, M. and Ansari, R. (2014), "Surface energy effects on the free vibration characteristics of postbuckled thirdorder shear deformable nanobeams", Compos. Struct., 116, 552-561. https://doi.org/10.1016/j.compstruct.2014.05.035
  71. Sahmani, S., Bahrami, M., Aghdam, M.M. and Ansari, R. (2014), "Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams", Compos. Struct., 118, 149-158. https://doi.org/10.1016/j.compstruct.2014.07.026
  72. Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
  73. Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
  74. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  75. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  76. Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocal curved beams", Struct. Eng. Mech., 59(3), 475-502. https://doi.org/10.12989/sem.2016.59.3.475
  77. Wang, C.M. and Duan, W.H. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642
  78. Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301
  79. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  80. Zhao, T., Luo, J. and Xiao, Z. (2015), "Buckling analysis of a nanowire lying on Winkler-Pasternak elastic foundation", Mech. Adv. Mater. Struct., 22(5), 394-401. https://doi.org/10.1080/15376494.2012.736064