References
- Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R. and Sahmani, S. (2014), "On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory", Compos. Part B: Eng., 60, 158-166. https://doi.org/10.1016/j.compositesb.2013.12.066
- Assadi, A. and Farshi, B. (2011), "Size dependent vibration of curved nanobeams and rings including surface energies", Physica E: Low-dimens. Syst. Nanostruct., 43(4), 975-978. https://doi.org/10.1016/j.physe.2010.11.031
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials-Application to Al 88- x Y 7 Fe 5 Ti x metallic glasses", Ultramicro., 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010
- Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Ebrahimi, F. and Barati, M.R. (2016a), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Euro. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
- Ebrahimi, F. and Barati, M.R. (2016b), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Euro. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2016c), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203
- Ebrahimi, F. and Barati, M.R. (2016d), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1
- Ebrahimi, F. and Barati, M.R. (2016e), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42(5), 1715-172.
- Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 1-10.
- Ebrahimi, F. and Barati, M.R. (2017b), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721
- Ebrahimi, F. and Barati, M.R. (2017c), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021
- Ebrahimi, F. and Barati, M.R. (2017d), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
- Ebrahimi, F. and Barati, M.R. (2017e), "A modified nonlocal couple stress based beam model for vibration analysis of higherorder FG nanobeams", Mech. Adv. Mater. Struct. (just accepted)
- Ebrahimi, F. and Barati, M.R. (2017f), "Scale-dependent effects on wave propagation in magnetically affected single/doublelayered compositionally graded nanosize beams", Wave. Random Complex Media, 1-17.
- Ebrahimi, F. and Barati, M.R. (2017h), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
- Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316. https://doi.org/10.1007/s00339-015-9512-6
- Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Euro. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3
- Ebrahimi, F. and Daman, M. (2016a), "Dynamic modeling of embedded curved nanobeams incorporating surface effects", Coupl. Syst. Mech., 5(3), 255-267. https://doi.org/10.12989/csm.2016.5.3.255
- Ebrahimi, F. and Daman, M. (2016b), "Investigating surface effects on thermomechanical behavior of embedded circular curved nanosize beams", J. Eng., 2016, Article ID 9848343, 11.
- Ebrahimi, F. and Daman, M. (2016c), "An investigation of radial vibration modes of embedded double-curved-nanobeam systems", Cankaya Univ. J. Sci. Eng., 13, 058-079.
- Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., 5(1), 35-47. https://doi.org/10.12989/anr.2017.5.1.035
- Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
- Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
- Ebrahimi, F. and Salari, E. (2015b). Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
- Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F. and Salari, E. (2015d), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105, 151-181.
- Ebrahimi, F. and Salari, E. (2015e), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
- Ebrahimi, F. and Salari, E. (2015f), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
- Ebrahimi, F. and Salari, E. (2016a), "Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams", Appl. Phys. A, 122(9), 793. https://doi.org/10.1007/s00339-016-0273-7
- Ebrahimi, F. and Salari, E. (2016b), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., 4(3), 197-228. https://doi.org/10.12989/anr.2016.4.3.197
- Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringens nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
- Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions", Smart Struct. Syst., 18(6), 1087-1109. https://doi.org/10.12989/sss.2016.18.6.1087
- Ebrahimi, F., & Barati, M. R. (2017g), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406217713518.
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Tech., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccanica, 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "A semianalytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions", Int. J. Struct. Stab. Dyn., 16(06), 1550023. https://doi.org/10.1142/S0219455415500236
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/ANR.2017.5.2.179
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Euro. J. Mech. A/Solid., 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
- Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z.L. (2010), "External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868
- Jang, T.S., Baek, H.S. and Paik, J.K. (2011), "A new method for the non-linear deflection analysis of an infinite beam resting on a non-linear elastic foundation", Int. J. Nonlin. Mech., 46(1), 339-346. https://doi.org/10.1016/j.ijnonlinmec.2010.09.017
- Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solid. Struct., 11(5), 848-853. https://doi.org/10.1590/S1679-78252014000500007
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047 https://doi.org/10.1016/j.compstruct.2012.01.023
- Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283.
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Li, L. and Hu, Y. (2017a), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
- Li, L. and Hu, Y. (2017b), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Liu, H., Han, Y. and Yang, J.L. (2016), "Surface effects on large deflection of a curved elastic nanobeam under static bending", Int. J. Appl. Mech., 8(8), 1650098. https://doi.org/10.1142/S1758825116500988
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlin. Dyn., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x
- Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627
- Nazemnezhad, R., Salimi, M., Hashemi, S.H. and Sharabiani, P.A. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B: Eng., 43(8), 2893-2897. https://doi.org/10.1016/j.compositesb.2012.07.029
- Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
- Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052-1056. https://doi.org/10.1016/j.commatsci.2010.11.001
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Sahmani, S., Bahrami, M. and Ansari, R. (2014), "Surface energy effects on the free vibration characteristics of postbuckled thirdorder shear deformable nanobeams", Compos. Struct., 116, 552-561. https://doi.org/10.1016/j.compstruct.2014.05.035
- Sahmani, S., Bahrami, M., Aghdam, M.M. and Ansari, R. (2014), "Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams", Compos. Struct., 118, 149-158. https://doi.org/10.1016/j.compstruct.2014.07.026
- Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
- Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocal curved beams", Struct. Eng. Mech., 59(3), 475-502. https://doi.org/10.12989/sem.2016.59.3.475
- Wang, C.M. and Duan, W.H. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642
- Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhao, T., Luo, J. and Xiao, Z. (2015), "Buckling analysis of a nanowire lying on Winkler-Pasternak elastic foundation", Mech. Adv. Mater. Struct., 22(5), 394-401. https://doi.org/10.1080/15376494.2012.736064