DOI QR코드

DOI QR Code

A2B Adenosine Receptor Stimulation Down-regulates M-CSF-mediated Osteoclast Proliferation

  • Oh, Yoon Taek (Department of Medical Science, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Na Kyung (Department of Medical Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2017.09.02
  • Accepted : 2017.09.18
  • Published : 2017.09.30

Abstract

Bone-resorbing osteoclasts play a major role in maintaining bone homeostasis with bone-forming osteoblasts. Although it has been reported that A2B adenosine receptor (A2BAR) regulates osteoclast differentiation, its effects on apoptosis or proliferation of osteoclasts have been less-defined. Here, we demonstrate that A2BAR stimulation regulates macrophage-colony stimulating factor (M-CSF)-mediated osteoclast proliferation. Stimulation with a specific agonist of A2BAR, BAY 60-6583, significantly reduced M-CSF-mediated osteoclast proliferation in a time- and dose-dependent manner. In addition, A2BAR stimulation induced both apoptosis of the cells and cell arrest in the G1 phase with a decrease of cell number in the G2/M phase. Stimulation with BAY 60-6583 inhibited the activation of Akt by M-CSF, whereas M-CSF-induced ERK1/2 activation was not affected. These results suggest that the inhibition of M-CSF-mediated Akt activation by A2BAR stimulation increases apoptotic response of osteoclasts and induces cell cycle arrest in the G1 phase, thus contributing to the down-regulation of osteoclast proliferation.

Keywords

References

  1. Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA. Extracellular nucleotide signaling: A mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone. 2001. 28: 507-512. https://doi.org/10.1016/S8756-3282(01)00430-6
  2. Bradley EW, Ruan MM, Vrable A, Oursler MJ. Pathway crosstalk between Ras/Raf and PI3K in promotion of M-CSF-induced MEK/ERK-mediated osteoclast survival. Journal of Cellular Biochemistry. 2008. 104: 1439-1451. https://doi.org/10.1002/jcb.21719
  3. Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2b adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. Journal of Cellular Biochemistry. 2012. 287: 15718-15727.
  4. Corciulo C, Wilder T, Cronstein BN. Adenosine a2b receptors play an important role in bone homeostasis. Purinergic Signalling. 2016. 12: 537-547. https://doi.org/10.1007/s11302-016-9519-2
  5. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002. 99: 111-120. https://doi.org/10.1182/blood.V99.1.111
  6. Faccio R, Takeshita S, Colaianni G, Chappel J, Zallone A, Teitelbaum SL, Ross FP. M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-fms tyr-559/697/721. Journal of Cellular Biochemistry. 2007. 282:18991-18999.
  7. Gingery A, Bradley E, Shaw A, Oursler MJ. Phosphatidylinositol 3-kinase coordinately activates the mek/erk and akt/nfkappab pathways to maintain osteoclast survival. Journal of Cellular Biochemistry. 2003. 89: 165-179. https://doi.org/10.1002/jcb.10503
  8. Ham J, Evans BA. An emerging role for adenosine and its receptors in bone homeostasis. Frontiers in Endocrinology. 2012. 3: 113.
  9. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003. 423: 349-355. https://doi.org/10.1038/nature01660
  10. Kara FM, Chitu V, Sloane J, Axelrod M, Fredholm BB, Stanley ER, Cronstein BN. Adenosine a1 receptors (a1rs) play a critical role in osteoclast formation and function. FASEB J. 2010. 24:2325-2333. https://doi.org/10.1096/fj.09-147447
  11. Kim HS, Lee NK. Gene expression profiling in osteoclast precursors by insulin using microarray analysis. Molecules and Cells. 2014. 37: 827-832. https://doi.org/10.14348/molcells.2014.0223
  12. Kodama H, Nose M, Niida S, Yamasaki A. Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. Journal of Experimental Medicine. 1991. 173: 1291-1294. https://doi.org/10.1084/jem.173.5.1291
  13. Lee JY, Lee NK. Up-regulation of CyclinD1 and Bcl2A1 by insulin is involved in osteoclast proliferation. Life Sciences. 2014. 114: 57-61. https://doi.org/10.1016/j.lfs.2014.07.006
  14. Long JS, Crighton D, O'Prey J, Mackay G, Zheng L, Palmer TM, Gottlieb E, Ryan KM. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Molecules and Cells. 2013. 50: 394-406.
  15. Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends in Endocrinology and Metabolism. 2013. 24: 290-300. https://doi.org/10.1016/j.tem.2013.02.001
  16. Oh JH, Lee JY, Joung SH, Oh YT, Kim HS, Lee NK. Insulin enhances rankl-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2. Cellular Signalling. 2015. 27: 2325-2331. https://doi.org/10.1016/j.cellsig.2015.09.002
  17. Orriss IR, Burnstock G, Arnett TR. Purinergic signalling and bone remodelling. Current Opinion in Pharmacology. 2010. 10: 322-330. https://doi.org/10.1016/j.coph.2010.01.003
  18. Pixley FJ, Stanley ER. Csf-1 regulation of the wandering macrophage: Complexity in action. Trends In Cell Biology. 2004. 14: 628-638. https://doi.org/10.1016/j.tcb.2004.09.016
  19. Ross FP. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Annals of the New York Academy of Sciences. 2006. 1068: 110-116. https://doi.org/10.1196/annals.1346.014
  20. Strazzulla LC, Cronstein BN. Regulation of bone and cartilage by adenosine signaling. Purinergic Signalling. 2016. 12: 583-593. https://doi.org/10.1007/s11302-016-9527-2
  21. Tanaka S, Miyazaki T, Fukuda A, Akiyama T, Kadono Y, Wakeyama H, Kono S, Hoshikawa S, Nakamura M, Ohshima Y, Hikita A, Nakamura I, Nakamura K. Molecular mechanism of the life and death of the osteoclast. Annals of the New York Academy of Sciences. 2006. 1068: 180-186. https://doi.org/10.1196/annals.1346.020
  22. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000. 289:1504-1508. https://doi.org/10.1126/science.289.5484.1504
  23. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nature Reviews Genetics. 2003. 4: 638-649. https://doi.org/10.1038/nrg1122
  24. Trincavelli ML, Daniele S, Giacomelli C, Taliani S, Da Settimo F, Cosimelli B, Greco G, Novellino E, Martini C. Osteoblast differentiation and survival: A role for a2b adenosine receptor allosteric modulators. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2014. 1843: 2957-2966. https://doi.org/10.1016/j.bbamcr.2014.09.013
  25. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Jr., Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER. Total absence of colonystimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proceedings of the National Academy of Sciences of the United States of America. 1990. 87: 4828-4832. https://doi.org/10.1073/pnas.87.12.4828
  26. Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochemical and Biophysical Research Communications. 2005. 328: 709-720. https://doi.org/10.1016/j.bbrc.2004.11.072