DOI QR코드

DOI QR Code

Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases

  • Hwang, Soonjae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Park, Chan Oh (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
  • 투고 : 2017.09.05
  • 심사 : 2017.09.17
  • 발행 : 2017.09.30

초록

The bacterial cells located within the gastrointestinal tract (GIT) outnumber the host's cells by a factor of ten. These human digestive-tract microbes are referred to as the gut microbiota. During the last ten years, our understanding of gut microbiota composition and its relation with intra- and extra-intestinal diseases including risk factors of cardiovascular diseases (CVD) such as atherosclerosis and metabolic syndrome, have greatly increased. A question which frequently arises in the research community is whether one can modulate the gut microbial environment to 'control' risk factors in CVD. In this review, we summarized promising intervention methods, based on our current knowledge of intestinal microbiota in modulating CVD. Furthermore, we explore how gut microbiota can be therapeutically exploited by targeting their metabolic program to control pathologic factors of CVD.

키워드

참고문헌

  1. Andersen NN, Jess T. Risk of cardiovascular disease in inflam0 matory bowel disease. World Journal of Gastrointestinal Pathophysiology. 2014. 5: 359-365. https://doi.org/10.4291/wjgp.v5.i3.359
  2. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA, Russell G, Surawicz C. Treating Clostridium difficile infection with fecal microbiota transplantation. Clinical Gastroenterology and Hepatology. 2011. 9: 1044-1049. https://doi.org/10.1016/j.cgh.2011.08.014
  3. Brugere JF, Borrel G, Gaci N, Tottey W, O'Toole PW, Malpuech-Brugere C. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes. 2014. 5: 5-10. https://doi.org/10.4161/gmic.26749
  4. Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. Journal of Internal Medicine. 2010. 268: 320-328. https://doi.org/10.1111/j.1365-2796.2010.02270.x
  5. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008. 57: 1470-1481. https://doi.org/10.2337/db07-1403
  6. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American Journal of Clinical Nutrition. 2009. 90: 1236-1243. https://doi.org/10.3945/ajcn.2009.28095
  7. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009. 58:1091-1103. https://doi.org/10.1136/gut.2008.165886
  8. Carvalho FA, Koren O, Goodrich JK, Johansson ME, Nalbantoglu I, Aitken JD, Su Y, Chassaing B, Walters WA, Gonzalez A, Clemente JC, Cullender TC, Barnich N, Darfeuille-Michaud A, Vijay-Kumar M, Knight R, Ley RE, Gewirtz AT. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012. 12: 139-152. https://doi.org/10.1016/j.chom.2012.07.004
  9. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. Journal of Clinical Investigation. 2014. 124: 3391-3406. https://doi.org/10.1172/JCI72517
  10. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012. 488: 621-626. https://doi.org/10.1038/nature11400
  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014. 505: 559-563. https://doi.org/10.1038/nature12820
  12. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America. 2010. 107: 14691-14696. https://doi.org/10.1073/pnas.1005963107
  13. Den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. Short-chain fatty acids protect against highfat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015. 64: 2398-2408. https://doi.org/10.2337/db14-1213
  14. Engervall P, Granstrom M, Andersson B, Bjorkholm M. Monitoring of endotoxin, interleukin-6 and C-reactive protein serum concentrations in neutropenic patients with fever. European Journal of Haematology. 1995. 54: 226-234.
  15. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. Bioinformatics challenges for personalized medicine. Bioinformatics. 2011. 27: 1741-1748. https://doi.org/10.1093/bioinformatics/btr295
  16. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition & Diabetes. 2014. 4: e121. https://doi.org/10.1038/nutd.2014.23
  17. Foye OT, Huang IF, Chiou CC, Walker WA, Shi HN. Early administration of probiotic Lactobacillus acidophilus and/or prebiotic inulin attenuates pathogen-mediated intestinal inflammation and Smad 7 cell signaling. FEMS Immunology and Medical Microbiology. 2012. 65: 467-480. https://doi.org/10.1111/j.1574-695X.2012.00978.x
  18. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Louise Thomas E, Bell JD. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications. 2014. 5: 3611. https://doi.org/10.1038/ncomms4611
  19. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013. 504: 446-450. https://doi.org/10.1038/nature12721
  20. Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clinical Infectious Diseases. 2011. 53: 994-1002. https://doi.org/10.1093/cid/cir632
  21. Ho K. Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era. Perspectives in Biology and Medicine. 2001. 44: 1-16. https://doi.org/10.1353/pbm.2001.0006
  22. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013. 342: 967-970. https://doi.org/10.1126/science.1240527
  23. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. European Journal of Clinical Nutrition. 2012. 66: 1234-1241. https://doi.org/10.1038/ejcn.2012.126
  24. Kelly G. Inulin-type prebiotics--a review: part 1. Alternative Medicine Review. 2008. 13: 315-329.
  25. Kinross JM, Darzi AW. Gut microbiome-host interactions in health and disease. Genome Medicine. 2011. 3: 14. https://doi.org/10.1186/gm228
  26. Kleerebezem M, Vaughan EE. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annual Review of Microbiology. 2009. 63: 269-290. https://doi.org/10.1146/annurev.micro.091208.073341
  27. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine. 2013. 19: 576-585. https://doi.org/10.1038/nm.3145
  28. Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, Backhed F. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America. 2011. 108: 4592-4598. https://doi.org/10.1073/pnas.1011383107
  29. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in Clinical Practice. 2012. 27: 201-214. https://doi.org/10.1177/0884533611436116
  30. Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza E, Zharkova-Malkova O, Grinberga S, Pugovics O, Dambrova M. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sciences. 2014. 117: 84-92. https://doi.org/10.1016/j.lfs.2014.09.028
  31. Kwon SY, Na YA. The assessment of framingham risk score and 10 Year CHD risk according to application of LDL cholesterol or total cholesterol. Korean Journal of Clinical Laboratory Sciences. 2016. 48: 54-61. https://doi.org/10.15324/kjcls.2016.48.2.54
  32. Lalles JP. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutrition Reviews. 2010. 68: 323-332. https://doi.org/10.1111/j.1753-4887.2010.00292.x
  33. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, Morris MJ. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015. 10: e0126931. https://doi.org/10.1371/journal.pone.0126931
  34. Lim CW, Kim JG. The usefulness of rapid triple test for cardiac marker in rorensic paragnosis of sudden cardiac death. Korean Journal of Clinical Laboratory Sciences. 2017. 49: 108-113. https://doi.org/10.15324/kjcls.2017.49.2.108
  35. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011. 1: 111-114. https://doi.org/10.4161/bact.1.2.14590
  36. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012. 489: 220-230. https://doi.org/10.1038/nature11550
  37. Lundin JI, Checkoway H. Endotoxin and cancer. Environmental Health Perspectives. 2009. 117: 1344-1350. https://doi.org/10.1289/ehp.0800439
  38. Mackensen A, Galanos C, Engelhardt R. Treatment of cancer patients with endotoxin induces release of endogenous cytokines. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology. 1991. 59: 264-267. https://doi.org/10.1159/000163659
  39. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, Pei Y, Novak L, Lee JY, Julian BA, Novak J, Ranger A, Gommerman JL, Browning JL. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. Journal of Clinical Investigation. 2011. 121: 3991-4002. https://doi.org/10.1172/JCI45563
  40. Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the gut's microbiota. Gut Liver. 2012. 6: 411-416. https://doi.org/10.5009/gnl.2012.6.4.411
  41. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012. 336: 1262-1267. https://doi.org/10.1126/science.1223813
  42. Raftery T, O'Sullivan M. Risk factors for cardiovascular events in inflammatory bowel disease. The American Journal of Gastroenterology. 2011. 106: 2042-2043.
  43. Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therapeutic Advances in Gastro enterology. 2012. 5: 403-420. https://doi.org/10.1177/1756283X12453637
  44. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology. 2009. 9: 313-323. https://doi.org/10.1038/nri2515
  45. Schwartz M, Gluck M, Koon S. Norovirus gastroenteritis after fecal microbiota transplantation for treatment of Clostridium difficile infection despite asymptomatic donors and lack of sick contacts. American Journal of Gastroenterology. 2013. 108: 1367-1367.
  46. Shen TC, Albenberg L, Bittinger K, Chehoud C, Chen YY, Judge CA, Chau L, Ni J, Sheng M, Lin A, Wilkins BJ, Buza EL, Lewis JD, Daikhin Y, Nissim I, Yudkoff M, Bushman FD, Wu GD. Engineering the gut microbiota to treat hyperammonemia. Journal of Clinical Investigation. 2015. 125: 2841-2850. https://doi.org/10.1172/JCI79214
  47. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology. 2015. 33: 496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
  48. Shin KA, Hong SB, Shin KS. Body adiposity index and metabolic syndrome risk factors in Korean adults: a comparison with body mass index and other parameters. Biomedical Science Letters. 2017. 23: 57-63. https://doi.org/10.15616/BSL.2017.23.2.57
  49. Shin KA. The association of pulse pressure and pre-metabolic syndrome in Korean middle-aged men. Biomedical Science Letters. 2017. 23: 73-79. https://doi.org/10.15616/BSL.2017.23.2.73
  50. Shin KA. Clinical usefulness of serum uric acid and resting heart rate in the diagnosis of metabolic syndrome in Korean adults. Biomedical Science Letters. 2017. 23: 118-127. https://doi.org/10.15616/BSL.2017.23.2.118
  51. Singh V, Chassaing B, Zhang L, San Yeoh B, Xiao X, Kumar M, Baker MT, Cai J, Walker R, Borkowski K, Harvatine KJ, Singh N, Shearer GC, Ntambi JM, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metabolism. 2015. 22: 983-996. https://doi.org/10.1016/j.cmet.2015.09.028
  52. Stenman LK, Waget A, Garret C, Briand F, Burcelin R, Sulpice T, Lahtinen S. Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetology & Metabolic Syndrome. 2015. 7: 75. https://doi.org/10.1186/s13098-015-0075-7
  53. Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, Schwarzer M, Tlaskalova-Hogenova H. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. Journal of Atherosclerosis and Thrombosis. 2010. 17: 796-804. https://doi.org/10.5551/jat.3285
  54. Summers WC. Bacteriophage therapy. Annual Review of Microbiology. 2001. 55: 437-451. https://doi.org/10.1146/annurev.micro.55.1.437
  55. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. Journal of Clinical Investigation. 2014. 124: 4204-4211. https://doi.org/10.1172/JCI72331
  56. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine. 2013. 368: 1575-1584. https://doi.org/10.1056/NEJMoa1109400
  57. Teixeira TF, Grzeskowiak L, Franceschini SC, Bressan J, Ferreira CL, Peluzio MC. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. British Journal of Nutrition. 2013. 109: 914-919. https://doi.org/10.1017/S0007114512002723
  58. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. International Journal of Obesity. 2013. 37: 16-23. https://doi.org/10.1038/ijo.2012.132
  59. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006. 444: 1027-1031. https://doi.org/10.1038/nature05414
  60. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012. 143: 913-916 e917. https://doi.org/10.1053/j.gastro.2012.06.031
  61. Wang L, Chen Q, Qi H, Wang C, Wang C, Zhang J, Dong L. Doxorubicin-induced systemic inflammation is driven by upregulation of toll-like receptor TLR4 and endotoxin leakage. Cancer Research. 2016. 76: 6631-6642. https://doi.org/10.1158/0008-5472.CAN-15-3034
  62. Wolever TM, Schrade KB, Vogt JA, Tsihlias EB, McBurney MI. Do colonic short-chain fatty acids contribute to the long-term adaptation of blood lipids in subjects with type 2 diabetes consuming a high-fiber diet? American Journal of Clinical Nutrition. 2002. 75: 1023-1030. https://doi.org/10.1093/ajcn/75.6.1023
  63. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011. 334: 105-108. https://doi.org/10.1126/science.1208344
  64. Wu P, Jia F, Zhang B, Zhang P. Risk of cardiovascular disease in inflammatory bowel disease. Experimental and Therapeutic Medicine. 2017. 13: 395-400. https://doi.org/10.3892/etm.2016.3966
  65. Wymore Brand M, Wannemuehler MJ, Phillips GJ, Proctor A, Overstreet AM, Jergens AE, Orcutt RP, Fox JG. The altered Schaedler flora: Continued applications of a defined murine microbial community. Institute for Laboratory Animal Research. 2015. 56: 169-178. https://doi.org/10.1093/ilar/ilv012
  66. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang C, Li M, Sun L, Xue Z, Wang J, Feng J, Yan F, Zhao N, Liu J, Long W, Zhao L. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiology Ecology. 2014. 87: 357-367. https://doi.org/10.1111/1574-6941.12228