References
-
F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, and X. Meng, A review on selective catalytic reduction of NOx by
$NH_3$ over Mn-based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations, Catalysts, 7, 199-231 (2017). https://doi.org/10.3390/catal7070199 -
Z. Liu, Y. Liu, Y. Li, H. Su, and L. Ma,
$WO_3$ promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with$NH_3$ , Chem. Eng. J., 283, 1044-1050 (2016). https://doi.org/10.1016/j.cej.2015.08.040 - S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy, 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
- P. Granger and V. I. Parvulescu, Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-Treatment technologies, Chem. Rev., 111, 3155-3207 (2011). https://doi.org/10.1021/cr100168g
- T. Boningari and P. G. Smirniotis, Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement, Curr. Opin. Chem. Eng., 13, 133-141 (2016). https://doi.org/10.1016/j.coche.2016.09.004
- F. Nakajima and I. Hamada, The state-of-the-art technology of NOx control, Catal. Today, 29, 109-115 (1996). https://doi.org/10.1016/0920-5861(95)00288-X
- G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B, 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
- F. Castellino, S. B. Rasmussen, A. D. Jensen,. J. E. Johnsson, and R. Fehrmann, Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids, Appl. Catal. B, 83, 110-122 (2008). https://doi.org/10.1016/j.apcatb.2008.02.008
- Z. M. Liu and S. I. Woo, Recent advances in catalytic deNOx science and technology, Catal. Rev. Sci. Eng., 48, 43-89 (2006). https://doi.org/10.1080/01614940500439891
-
L. J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo, and M. Trombetta, Characterization and composition of commercial
$V_2O_5-WO_3-TiO_2$ SCR catalysts, Appl. Catal. B, 10, 299-311 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X -
P. Forzatti, I. Nova, E. Tronconi, A. Kustov, and J. R. Thogersen, Effect of operating variables on the enhanced SCR reaction over a commercial
$V_2O_5-WO_3/TiO_2$ catalyst for stationary applications, Catal. Today, 184, 153-159 (2012). https://doi.org/10.1016/j.cattod.2011.11.006 - R. M. Heck, Catalytic abatement of nitrogen oxides-stationary applications, Catal. Today, 53, 519-523 (1999). https://doi.org/10.1016/S0920-5861(99)00139-X
- E. Hums, Is advanced SCR technology at a standstill? A provocation for the academic community and catalyst manufacturers. Catal. Today, 42, 25-35 (1998). https://doi.org/10.1016/S0920-5861(98)00073-X
- S. Y. Joshi, M. P. Harold, and V. Balakotaiah, Overall mass transfer coefficients and controlling regimes in catalytic monoliths, Chem. Eng. Sci., 65, 1729-1747 (2010). https://doi.org/10.1016/j.ces.2009.11.021
- I. Nova, L. dall'Acqua, L. Lietti, E. Giamello, and P. Forzatti, Study of thermal deactivation of a de-NOx commercial catalyst, Appl. Catal. B, 35, 31-42 (2001). https://doi.org/10.1016/S0926-3373(01)00229-6
- G. Madia, M. Elsener, M. Koebel, F. Raimondi, and A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B, 39, 181-190 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1
-
P. G. W. A. Kompio, A. Brückner, F. Hipler, O. Manoylova, G. Auer, G. Mestl, and W. Grunert,
$V_2O_5-WO_3-TiO_2$ catalysts under thermal stress: Responses of structure and catalytic behavior in the selective catalytic reduction of NO by$NH_3$ , Appl. Catal. B, 217, 365-377 (2017). https://doi.org/10.1016/j.apcatb.2017.06.006 - D. A. H. Hanaor and C. C. Sorrel, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855-874 (2011). https://doi.org/10.1007/s10853-010-5113-0
-
S. S. Park, Thermal Degradation Behavior and Reaction Efficiency with Different Cell Density for
$TiO_2$ -based High Efficiency Honeycomb Type SCR Catalyst, PhD Dissertation, Gyeongsang National University, Jinju, Korea (2010). -
M. Faber, O. M. Uy, and R. D. Srivastava, Effusion-mass spectrometric determination of the heats of formation of the gaseous molecules
$V_4O_10$ ,$V_4O_8$ ,$VO_2$ , and VO* , J. Chem. Phys., 56, 5312-5315 (1972). https://doi.org/10.1063/1.1677037 - X.-Z. Huang, D. Wang, and Y.-T. Yang, Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel, J. Iron Steel Res. Int., 22, 1062-1068 (2015). https://doi.org/10.1016/S1006-706X(15)30113-8
- D. W. Huh and S. Rhee, A study on anti-oxidation of stainless steel spot weld, J. Korean Weld. Joining Soc., 29, 556-560 (2011).
Cited by
- NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system vol.36, pp.8, 2017, https://doi.org/10.1007/s11814-019-0325-8