DOI QR코드

DOI QR Code

Thermal Deactivation of Plate-type V2O5-WO3/TiO2 SCR Catalyst

Plate-type V2O5-WO3/TiO2 SCR 촉매의 열적 비활성화 특성

  • Cha, Jin-Sun (Material Technology Center, Korea Testing Laboratory) ;
  • Park, Jin-Woo (Nano Co., Ltd.) ;
  • Jeong, Bora (Green Materials & Processes Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Kim, Hong-Dae (Green Materials & Processes Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Park, Sam-Sik (Nano Co., Ltd.) ;
  • Shin, Min-Chul (Material Technology Center, Korea Testing Laboratory)
  • 차진선 (한국산업기술시험원 재료기술센터) ;
  • 박진우 ((주)나노) ;
  • 정보라 (한국생산기술연구원 울산지역본부 친환경재료공정그룹) ;
  • 김홍대 (한국생산기술연구원 울산지역본부 친환경재료공정그룹) ;
  • 박삼식 ((주)나노) ;
  • 신민철 (한국산업기술시험원 재료기술센터)
  • Received : 2017.08.19
  • Accepted : 2017.08.24
  • Published : 2017.10.10

Abstract

In the present paper, the thermal deactivation characteristics of plate-type commercial $V_2O_5-WO_3/TiO_2$ SCR catalyst were investigated. For this purpose, the plate-type catalyst was calcined at different temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ for 3 hours. Structural and morphological changes were characterized byXRD, specific surface area, porosity, SEM-EDS and also NOx conversion with ammonia according to the calcine temperature. The NOx conversion decreased with increasing calcine temperature, especially when the catalysts were calcined at temperatures above $700^{\circ}C$. This is because the crystal phase of $TiO_2$ changed from anatase to rutile, and the $TiO_2$ grain growth and $CaWO_4$ crystal phase were formed, which reduced the specific surface area and pore volume. In addition, $V_2O_5$, which is a catalytically active material, was sublimated or vaporized over $700^{\circ}C$, and a metal mesh used as a support of the catalyst occurred intergranular corrosion and oxidation due to the formation of Cr carbide.

본 연구에서는 plate-type의 $V_2O_5-WO_3/TiO_2$ SCR 촉매의 열적 비활성화 특성을 고찰하였다. 이를 위하여 plate type의 촉매를 $500{\sim}800^{\circ}C$의 온도에서 3 h 동안 열처리하였다. 촉매의 특성 변화를 고찰하기 위하여 XRD, $N_2$ adsorption-desorption에 의한 비표면적과 기공특성, SEM-EDS 등을 측정하였으며, 열처리 온도에 따른 NOx 전환율을 측정하였다. NOx 전환율은 열처리 온도가 증가함에 따라 감소하였는데 $700^{\circ}C$ 이상인 경우에 크게 감소하였다. 이는 $TiO_2$의 결정상이 anatase에서 rutile로 변하고, $TiO_2$의 입성장 및 $CaWO_4$와 같은 결정상이 생성되어 촉매의 비표면적과 기공부피가 감소하였기 때문이다. 또한 $700^{\circ}C$ 이상의 온도에서는 촉매 활성물질인 $V_2O_5$가 승화/기화되었으며, 촉매의 담지체로 사용되는 금속 지지체는 Cr 탄화물 형성에 따른 입계 부식과 산화가 발생하는 것으로 나타났다.

Keywords

References

  1. F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, and X. Meng, A review on selective catalytic reduction of NOx by $NH_3$ over Mn-based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations, Catalysts, 7, 199-231 (2017). https://doi.org/10.3390/catal7070199
  2. Z. Liu, Y. Liu, Y. Li, H. Su, and L. Ma, $WO_3$ promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with $NH_3$, Chem. Eng. J., 283, 1044-1050 (2016). https://doi.org/10.1016/j.cej.2015.08.040
  3. S. Roy, M. S. Hegde, and G. Madras, Catalysis for NOx abatement, Appl. Energy, 86, 2283-2297 (2009). https://doi.org/10.1016/j.apenergy.2009.03.022
  4. P. Granger and V. I. Parvulescu, Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-Treatment technologies, Chem. Rev., 111, 3155-3207 (2011). https://doi.org/10.1021/cr100168g
  5. T. Boningari and P. G. Smirniotis, Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement, Curr. Opin. Chem. Eng., 13, 133-141 (2016). https://doi.org/10.1016/j.coche.2016.09.004
  6. F. Nakajima and I. Hamada, The state-of-the-art technology of NOx control, Catal. Today, 29, 109-115 (1996). https://doi.org/10.1016/0920-5861(95)00288-X
  7. G. Busca, L. Lietti, G. Ramis, and F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, Appl. Catal. B, 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
  8. F. Castellino, S. B. Rasmussen, A. D. Jensen,. J. E. Johnsson, and R. Fehrmann, Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids, Appl. Catal. B, 83, 110-122 (2008). https://doi.org/10.1016/j.apcatb.2008.02.008
  9. Z. M. Liu and S. I. Woo, Recent advances in catalytic deNOx science and technology, Catal. Rev. Sci. Eng., 48, 43-89 (2006). https://doi.org/10.1080/01614940500439891
  10. L. J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo, and M. Trombetta, Characterization and composition of commercial $V_2O_5-WO_3-TiO_2$ SCR catalysts, Appl. Catal. B, 10, 299-311 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X
  11. P. Forzatti, I. Nova, E. Tronconi, A. Kustov, and J. R. Thogersen, Effect of operating variables on the enhanced SCR reaction over a commercial $V_2O_5-WO_3/TiO_2$ catalyst for stationary applications, Catal. Today, 184, 153-159 (2012). https://doi.org/10.1016/j.cattod.2011.11.006
  12. R. M. Heck, Catalytic abatement of nitrogen oxides-stationary applications, Catal. Today, 53, 519-523 (1999). https://doi.org/10.1016/S0920-5861(99)00139-X
  13. E. Hums, Is advanced SCR technology at a standstill? A provocation for the academic community and catalyst manufacturers. Catal. Today, 42, 25-35 (1998). https://doi.org/10.1016/S0920-5861(98)00073-X
  14. S. Y. Joshi, M. P. Harold, and V. Balakotaiah, Overall mass transfer coefficients and controlling regimes in catalytic monoliths, Chem. Eng. Sci., 65, 1729-1747 (2010). https://doi.org/10.1016/j.ces.2009.11.021
  15. I. Nova, L. dall'Acqua, L. Lietti, E. Giamello, and P. Forzatti, Study of thermal deactivation of a de-NOx commercial catalyst, Appl. Catal. B, 35, 31-42 (2001). https://doi.org/10.1016/S0926-3373(01)00229-6
  16. G. Madia, M. Elsener, M. Koebel, F. Raimondi, and A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal. B, 39, 181-190 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1
  17. P. G. W. A. Kompio, A. Brückner, F. Hipler, O. Manoylova, G. Auer, G. Mestl, and W. Grunert, $V_2O_5-WO_3-TiO_2$ catalysts under thermal stress: Responses of structure and catalytic behavior in the selective catalytic reduction of NO by $NH_3$, Appl. Catal. B, 217, 365-377 (2017). https://doi.org/10.1016/j.apcatb.2017.06.006
  18. D. A. H. Hanaor and C. C. Sorrel, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855-874 (2011). https://doi.org/10.1007/s10853-010-5113-0
  19. S. S. Park, Thermal Degradation Behavior and Reaction Efficiency with Different Cell Density for $TiO_2$-based High Efficiency Honeycomb Type SCR Catalyst, PhD Dissertation, Gyeongsang National University, Jinju, Korea (2010).
  20. M. Faber, O. M. Uy, and R. D. Srivastava, Effusion-mass spectrometric determination of the heats of formation of the gaseous molecules $V_4O_10$, $V_4O_8$, $VO_2$, and VO* , J. Chem. Phys., 56, 5312-5315 (1972). https://doi.org/10.1063/1.1677037
  21. X.-Z. Huang, D. Wang, and Y.-T. Yang, Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel, J. Iron Steel Res. Int., 22, 1062-1068 (2015). https://doi.org/10.1016/S1006-706X(15)30113-8
  22. D. W. Huh and S. Rhee, A study on anti-oxidation of stainless steel spot weld, J. Korean Weld. Joining Soc., 29, 556-560 (2011).

Cited by

  1. NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system vol.36, pp.8, 2017, https://doi.org/10.1007/s11814-019-0325-8