References
- M. T. Amin, A. A. Alazba, and U. Manzoor, A Review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater. Sci. Eng., 2014, 24 (2014).
- M. L. Boeglin, D. Wessels, and D. Henshel, An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties, Environ. Res., 100, 242-254 (2006). https://doi.org/10.1016/j.envres.2005.04.004
- W. Li, Q. Zhou, and T. Hua, Removal of organic matter from landfill leachate by advanced oxidation processes: A review, Int. J. Chem. Eng., 2010, 1-10 (2010).
- A. Muhammad, A. Shafeeq, M. A. Butt, Z. H. Rizvi, M. A. Chughtai, and S. Rehman, Decolorization and removal of COD and BOD from raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPs), Braz. J. Chem. Eng., 25, 453-459 (2008). https://doi.org/10.1590/S0104-66322008000300003
- R. Lamsal, M. E. Walsh, and G. A. Gagnon, Comparison of advanced oxidation processes for the removal of natural organic matter, Water Res., 45, 3263-3269 (2011). https://doi.org/10.1016/j.watres.2011.03.038
-
G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, X. Ye, and D. Y. C. Leung, UV/
$H_2O_2$ : An efficient aqueous advanced oxidation process for VOCs removal, Chem. Eng. J., 324, 44-50 (2017). https://doi.org/10.1016/j.cej.2017.04.105 -
H. Lin and G. Wang, Effects of UV/
$H_2O_2$ on NOM fractionation and corresponding DBPs formation, Desalination, 270, 221-226 (2011). https://doi.org/10.1016/j.desal.2010.11.049 -
M. Sun, Q. Zhao, C. Du, and Z. Liu, Enhanced visible light photocatalytic activity in BiOCl/
$SnO_2$ : Heterojunction of two wide band-gap semiconductors, RSC Adv., 5, 22740-22752 (2015). https://doi.org/10.1039/C4RA14187C -
X. Luan and Y. Wang, Preparation and photocatalytic activity of Ag/bamboo-type
$TiO_2$ nanotube composite electrodes for methylene blue degradation, Mater. Sci. Semicond. Process., 25, 43-51 (2014). https://doi.org/10.1016/j.mssp.2013.10.023 - Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang and X. Qin, Progress on extending the light absorption spectra of photocatalysts, Phys. Chem. Chem. Phys., 16, 2758-2774 (2014). https://doi.org/10.1039/c3cp53817f
-
W. M. Girm, C. H. Chen, C. H. Yang, P. Wang, K. L. Ou, D. J. Liaw and J. Y. Chang, A low molecular mass organogelator electrolyte with
$TiO_2$ nanoparticles for stable and efficient quasi-solid-state dye sensitized solar cells, RSC Adv., 7, 7671-7678 (2017). https://doi.org/10.1039/C6RA27203G -
Z. Zhang and J. T. Yates, Direct observation of surface-mediated Electron-Hole Pair Recombination in
$TiO_2$ (110), J. Phys. Chem. C, 114, 3098-3101 (2010). https://doi.org/10.1021/jp910404e - S. Sreekantan, S. Mohd. Zaki, C. W. Lai, and T. W. Tzu, Copper-incorporated titania nanotubes for effective lead ion removal, Mater. Sci. Semicond. Process., 26, 620-631 (2014). https://doi.org/10.1016/j.mssp.2014.05.034
- S. S. Mao, S. Shena, and L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Prog. Nat. Sci., 22, 522-534 (2012). https://doi.org/10.1016/j.pnsc.2012.12.003
-
R. Daghrir, P. Drogui, and D. Robert, Modified
$TiO_2$ for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res., 52, 3581-3599 (2013). https://doi.org/10.1021/ie303468t -
J. Y. Do, Y. Im, B. S. Kwak, J. Y. Kim, and M. Kang, Dramatic
$CO_2$ photoreduction with$H_2O$ vapors for$CH_4$ production using the$TiO_2$ (bottom)/Fe-$TiO_2$ (top) double-layered films, Chem. Eng. J., 275, 288-297 (2015). https://doi.org/10.1016/j.cej.2015.03.066 -
Z. Azri, V. Jovic, W. Chen, D. Sun, J. B. Metson, and G. I. N. Waterhouse, Performance evaluation of Pd/
$TiO_2$ and Pt/$TiO_2$ photocatalysts for hydrogen production from ethanol-water mixtures, Int. J. Nanotechnol., 11, 695-703 (2014). https://doi.org/10.1504/IJNT.2014.060592 -
B. Tapin, F. Epron, C. Especel, B. K. Ly, C. Pinel, and M. Besson, Study of monometallic Pd/
$TiO_2$ catalysts for the hydrogenation of succinic acid in aqueous phase, ACS Catal., 3(10), 2327-2335 (2013). https://doi.org/10.1021/cs400534x -
H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, and G. Lalev, Pd/ZnO catalysts for direct
$CO_2$ hydrogenation to methanol, J. Catal., 343, 133-146 (2016). https://doi.org/10.1016/j.jcat.2016.03.017 - J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, and E. S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19, 211-216 (2016). https://doi.org/10.1016/j.proche.2016.03.095
- J. S. J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React., 2, 1-4 (2016). https://doi.org/10.1080/2055074X.2015.1133269
- N. M. Ravindra, P. Ganapathy, and J. Choi, Energy gap-refractive index relations in semiconductors - An overview, Infrared Phys. Technol., 50, 21-29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001
-
K. Yoshimoto, A. Masuno, M. Ueda, H. Inoue, H. Yamamoto, and T. Kawashima, Low phonon energies and wideband optical windows of
$La_2O_3-Ga_2O_3$ glasses prepared using an aerodynamic levitation technique, Sci. Rep., 7, 1-9 (2017). https://doi.org/10.1038/s41598-016-0028-x -
H. Khan and I. K. Swati,
$Fe^{3+}$ -doped Anatase$TiO_2$ with d-d transition, oxygen vacancies and$Ti^{3+}$ centers: Synthesis, characterization, UV-vis photocatalytic and mechanistic studies, Ind. Eng. Chem. Res., 55, 6619-6633 (2016). https://doi.org/10.1021/acs.iecr.6b01104 -
J. Y. Do, V. Tamilavan, R. Agneeswari, M. H. Hyun, and M. Kang, Synthesis and optical properties of TDQD and effective
$CO_2$ reduction using a TDQD-photosensitized$TiO_2$ film, J. Photochem. Photobiol. A, 330, 30-36 (2016). https://doi.org/10.1016/j.jphotochem.2016.07.014 -
N. Son, J. Y. Do, and M. Kang, Characterization of core@ shell-structured
$ZnO@Sb_2S3_$ particles for effective hydrogen production from water photo spitting, Ceram. Int., 43, 11250-11259 (2017). https://doi.org/10.1016/j.ceramint.2017.05.175 -
Y, Liu, Y. Zhu, J. Xu, X. Bai, R. Zong, and Y. Zhu, Degradation and mineralization mechanism of phenol by
$BiPO_4$ photocatalysis assisted with$H_2O_2$ , Appl. Catal. B, 142-143, 561-567 (2013). https://doi.org/10.1016/j.apcatb.2013.05.049 -
V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, and S. Yurdakal, Overview on oxidation mechanisms of organic compounds by
$TiO_2$ in heterogeneous photocatalysis, J. Photochem. Photobiol. C, 13, 224-245 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.04.003 - C. Valdes, J. A. Morales, E. Osorio, and J. Villasenor, Carlos Navarro-Retamal, A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction, Chem. Phys. Lett., 640, 16-22 (2015). https://doi.org/10.1016/j.cplett.2015.10.005