DOI QR코드

DOI QR Code

Optical Properties and Phenol Destruction Performance of Pd-inserted TiO2 Photocatalysts

Pd이 삽입된 TiO2 광촉매의 광학 특성 및 페놀 분해 성능 평가

  • Received : 2017.07.20
  • Accepted : 2017.08.12
  • Published : 2017.10.10

Abstract

This study focused on the difference of photocatalytic performance by the incorporation of Pd into the $TiO_2$ framework and suggested five different catalysts composed of $TiO_2$ and x mol% $Pd-TiO_2$ (x = 0.25, 0.5, 0.75, and 1.0). A typical sol-gel method was used to synthesize catalysts, and the phenol photodegradation performance of each catalysts was evaluated. The physicochemical and optical properties of catalysts were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy/energy dispersive spectrometer (SEM/EDS), ultraviolet/visible spectroscopy (UV/Vis), photoluminescence spectroscopy (PL), and photocurrent measurements. With the addition of Pd ions, the band gap of catalysts was shortened and the charge separation between photogenerated electrons and holes easily also occurred. As a result, the phenol photo-destruction performance over 0.75 mol% $Pd-TiO_2$ catalyst was 3 times higher than that of pure $TiO_2$. This is believed to be due to Pd ions acted as an electron capturing function during photocatalysis.

본 연구는 $TiO_2$ 골격에 Pd을 삽입시켰을 때 나타나는 광 촉매 성능의 차이에 초점을 두고, $TiO_2$와 x mol% $Pd-TiO_2$(x = 0.25, 0.5, 0.75 그리고 1.0)의 5가지 촉매를 제안하였다. 전형적인 졸-겔 방법을 사용하여 촉매를 합성하고 각 촉매의 페놀 광 분해 성능을 평가하였다. XRD, TEM, SEM/EDS, UV/Vis 분광법, 광 발광 분광법 등을 이용하여 촉매의 물리화학적 특성을 확인하였고, 광 발광 분광법 및 광 전류 측정으로 광학적 특성을 확인하였다. Pd 이온을 첨가하면 촉매의 밴드 갭이 감소하고, 광 생성된 전자와 정공 사이의 전하 분리가 쉽게 발생한다. 결과적으로, 0.75 mol% $Pd-TiO_2$ 촉매상의 페놀 광 분해 성능은 순수한 $TiO_2$보다 3배 더 높았는데, 이는 광 촉매 반응 중에 Pd 이온이 전자캡쳐 역할을 하여 일어난 결과로 여겨진다.

Keywords

References

  1. M. T. Amin, A. A. Alazba, and U. Manzoor, A Review of removal of pollutants from water/wastewater using different types of nanomaterials, Adv. Mater. Sci. Eng., 2014, 24 (2014).
  2. M. L. Boeglin, D. Wessels, and D. Henshel, An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties, Environ. Res., 100, 242-254 (2006). https://doi.org/10.1016/j.envres.2005.04.004
  3. W. Li, Q. Zhou, and T. Hua, Removal of organic matter from landfill leachate by advanced oxidation processes: A review, Int. J. Chem. Eng., 2010, 1-10 (2010).
  4. A. Muhammad, A. Shafeeq, M. A. Butt, Z. H. Rizvi, M. A. Chughtai, and S. Rehman, Decolorization and removal of COD and BOD from raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPs), Braz. J. Chem. Eng., 25, 453-459 (2008). https://doi.org/10.1590/S0104-66322008000300003
  5. R. Lamsal, M. E. Walsh, and G. A. Gagnon, Comparison of advanced oxidation processes for the removal of natural organic matter, Water Res., 45, 3263-3269 (2011). https://doi.org/10.1016/j.watres.2011.03.038
  6. G. Liu, J. Ji, H. Huang, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, M. He, S. Liu, X. Ye, and D. Y. C. Leung, UV/$H_2O_2$: An efficient aqueous advanced oxidation process for VOCs removal, Chem. Eng. J., 324, 44-50 (2017). https://doi.org/10.1016/j.cej.2017.04.105
  7. H. Lin and G. Wang, Effects of UV/$H_2O_2$ on NOM fractionation and corresponding DBPs formation, Desalination, 270, 221-226 (2011). https://doi.org/10.1016/j.desal.2010.11.049
  8. M. Sun, Q. Zhao, C. Du, and Z. Liu, Enhanced visible light photocatalytic activity in BiOCl/$SnO_2$: Heterojunction of two wide band-gap semiconductors, RSC Adv., 5, 22740-22752 (2015). https://doi.org/10.1039/C4RA14187C
  9. X. Luan and Y. Wang, Preparation and photocatalytic activity of Ag/bamboo-type $TiO_2$ nanotube composite electrodes for methylene blue degradation, Mater. Sci. Semicond. Process., 25, 43-51 (2014). https://doi.org/10.1016/j.mssp.2013.10.023
  10. Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang and X. Qin, Progress on extending the light absorption spectra of photocatalysts, Phys. Chem. Chem. Phys., 16, 2758-2774 (2014). https://doi.org/10.1039/c3cp53817f
  11. W. M. Girm, C. H. Chen, C. H. Yang, P. Wang, K. L. Ou, D. J. Liaw and J. Y. Chang, A low molecular mass organogelator electrolyte with $TiO_2$ nanoparticles for stable and efficient quasi-solid-state dye sensitized solar cells, RSC Adv., 7, 7671-7678 (2017). https://doi.org/10.1039/C6RA27203G
  12. Z. Zhang and J. T. Yates, Direct observation of surface-mediated Electron-Hole Pair Recombination in $TiO_2$ (110), J. Phys. Chem. C, 114, 3098-3101 (2010). https://doi.org/10.1021/jp910404e
  13. S. Sreekantan, S. Mohd. Zaki, C. W. Lai, and T. W. Tzu, Copper-incorporated titania nanotubes for effective lead ion removal, Mater. Sci. Semicond. Process., 26, 620-631 (2014). https://doi.org/10.1016/j.mssp.2014.05.034
  14. S. S. Mao, S. Shena, and L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Prog. Nat. Sci., 22, 522-534 (2012). https://doi.org/10.1016/j.pnsc.2012.12.003
  15. R. Daghrir, P. Drogui, and D. Robert, Modified $TiO_2$ for environmental photocatalytic applications: A review, Ind. Eng. Chem. Res., 52, 3581-3599 (2013). https://doi.org/10.1021/ie303468t
  16. J. Y. Do, Y. Im, B. S. Kwak, J. Y. Kim, and M. Kang, Dramatic $CO_2$ photoreduction with $H_2O$ vapors for $CH_4$ production using the $TiO_2$ (bottom)/Fe-$TiO_2$ (top) double-layered films, Chem. Eng. J., 275, 288-297 (2015). https://doi.org/10.1016/j.cej.2015.03.066
  17. Z. Azri, V. Jovic, W. Chen, D. Sun, J. B. Metson, and G. I. N. Waterhouse, Performance evaluation of Pd/$TiO_2$ and Pt/$TiO_2$ photocatalysts for hydrogen production from ethanol-water mixtures, Int. J. Nanotechnol., 11, 695-703 (2014). https://doi.org/10.1504/IJNT.2014.060592
  18. B. Tapin, F. Epron, C. Especel, B. K. Ly, C. Pinel, and M. Besson, Study of monometallic Pd/$TiO_2$ catalysts for the hydrogenation of succinic acid in aqueous phase, ACS Catal., 3(10), 2327-2335 (2013). https://doi.org/10.1021/cs400534x
  19. H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, and G. Lalev, Pd/ZnO catalysts for direct $CO_2$ hydrogenation to methanol, J. Catal., 343, 133-146 (2016). https://doi.org/10.1016/j.jcat.2016.03.017
  20. J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, and E. S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19, 211-216 (2016). https://doi.org/10.1016/j.proche.2016.03.095
  21. J. S. J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React., 2, 1-4 (2016). https://doi.org/10.1080/2055074X.2015.1133269
  22. N. M. Ravindra, P. Ganapathy, and J. Choi, Energy gap-refractive index relations in semiconductors - An overview, Infrared Phys. Technol., 50, 21-29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001
  23. K. Yoshimoto, A. Masuno, M. Ueda, H. Inoue, H. Yamamoto, and T. Kawashima, Low phonon energies and wideband optical windows of $La_2O_3-Ga_2O_3$ glasses prepared using an aerodynamic levitation technique, Sci. Rep., 7, 1-9 (2017). https://doi.org/10.1038/s41598-016-0028-x
  24. H. Khan and I. K. Swati, $Fe^{3+}$-doped Anatase $TiO_2$ with d-d transition, oxygen vacancies and $Ti^{3+}$ centers: Synthesis, characterization, UV-vis photocatalytic and mechanistic studies, Ind. Eng. Chem. Res., 55, 6619-6633 (2016). https://doi.org/10.1021/acs.iecr.6b01104
  25. J. Y. Do, V. Tamilavan, R. Agneeswari, M. H. Hyun, and M. Kang, Synthesis and optical properties of TDQD and effective $CO_2$ reduction using a TDQD-photosensitized $TiO_2$ film, J. Photochem. Photobiol. A, 330, 30-36 (2016). https://doi.org/10.1016/j.jphotochem.2016.07.014
  26. N. Son, J. Y. Do, and M. Kang, Characterization of core@ shell-structured $ZnO@Sb_2S3_$ particles for effective hydrogen production from water photo spitting, Ceram. Int., 43, 11250-11259 (2017). https://doi.org/10.1016/j.ceramint.2017.05.175
  27. Y, Liu, Y. Zhu, J. Xu, X. Bai, R. Zong, and Y. Zhu, Degradation and mineralization mechanism of phenol by $BiPO_4$ photocatalysis assisted with $H_2O_2$, Appl. Catal. B, 142-143, 561-567 (2013). https://doi.org/10.1016/j.apcatb.2013.05.049
  28. V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, and S. Yurdakal, Overview on oxidation mechanisms of organic compounds by $TiO_2$ in heterogeneous photocatalysis, J. Photochem. Photobiol. C, 13, 224-245 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.04.003
  29. C. Valdes, J. A. Morales, E. Osorio, and J. Villasenor, Carlos Navarro-Retamal, A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction, Chem. Phys. Lett., 640, 16-22 (2015). https://doi.org/10.1016/j.cplett.2015.10.005