DOI QR코드

DOI QR Code

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces

액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용

  • Liu, XiaoYun (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Han, Hye Youn (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 리우샤오원 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 한혜연 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 고은서 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2017.05.26
  • Accepted : 2017.06.26
  • Published : 2017.10.10

Abstract

The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

편극화된 물/1,2-dichloroethane (1,2-DCE) 계면에서 이온화가 가능한 테트라사이클린(tetracycline, TC) 화학종 전이 반응을 순환전압전류법과 시차펄스전위법을 이용하여 조사하였다. 물의 pH 변화에 따라 전하 상태가 다른 TC 이온 화학종이 물/1,2-DCE 계면에서 전이하는 전위 값을 측정하여 TC 이온의 상 분배 도표를 얻었다. 이를 통해 각 pH에 따라 수용액 또는 유기 용액 층에서 좀 더 우세한 TC 이온 화학종 형태를 확인하였다. 이와 함께 상기 계면에서 TC 전이 반응의 형식 전이 전위, 분배 계수 및 Gibbs 에너지 값을 포함한 열역학적 정보를 얻었다. 또한 TC 이온을 정량 분석 가능한 센서로 제작하기 위해 고분자 박막에 단일 마이크로 홀을 만들고 유기성의 polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) 젤을 도포하여 물/젤 계면을 형성하였다. 물/1,2-DCE 계면에서 TC 이온의 전이 반응과 매우 유사하게 수용액의 pH가 4.0일 때 TC 이온의 농도 변화에 따라 전류 값이 증가하는 것을 순환전압전류법으로 관찰하였다. 시차펄스벗김전위법을 이용하여 상기 물/젤 계면에서 완충 수용액에 존재하는 TC 화학종을 $5{\mu}M$까지 검출할 수 있었으며, $5{\mu}M$에서 $30{\mu}M$까지 정량분석 할 수 있었다.

Keywords

References

  1. G. Greenstein, Clinical significance of bacterial resistance to tetracyclines in the treatment of periodontal diseases, J. Periodontol., 66, 925-931 (1995). https://doi.org/10.1902/jop.1995.66.11.925
  2. R. Daghrir and P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11, 209-227 (2013). https://doi.org/10.1007/s10311-013-0404-8
  3. H. Oka, Y. Ito, and H. Matsumoto, Chromatographic analysis of tetracycline antibiotics in foods, J. Chromatogr. A, 882, 109-133 (2000). https://doi.org/10.1016/S0021-9673(99)01316-3
  4. H. Ji and E. Wang, Flow injection amperometric detection based on ion transfer across a water - Solidified nitrobenzene interface for the determination of tetracycline and terramycin, Analyst, 113, 1541-1543 (1988). https://doi.org/10.1039/an9881301541
  5. M. Tumini, O. G. Nagel, P. Molina, and R. L. Althaus, Novel bioassay using Bacillus megaterium to detect tetracycline in milk, Rev. Argent. Microbiol., 48, 143-146 (2016).
  6. X.-Q. Wei, Z.-F. Liu, and S.-P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue, Anal. Biochem., 346, 330-332 (2005). https://doi.org/10.1016/j.ab.2005.08.006
  7. H. Wang, H. Zhao, X. Quan, and S. Chen, Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode, Electroanalysis, 23, 1863-1869 (2011). https://doi.org/10.1002/elan.201100049
  8. M. A. Ghandour and A. M. M. Ali, Adsorptive stripping voltammetric determination of tetracycline and oxytetracycline, Anal. Lett., 24, 2171-2186 (1991). https://doi.org/10.1080/00032719108053043
  9. M. E. Caplis, H. S. Ragheb, and E. D. Schall, Determination of tetracycline antibiotics by alternating-current polarography, J. Pharm. Sci., 54, 694-698 (1965). https://doi.org/10.1002/jps.2600540507
  10. M. Velicky, A. N. J. Rodgers, R. A. W. Dryfe, and K. Tam, Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs, ADMET DMPK, 2, 143-456 (2014).
  11. G. Bouchard, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Lipophilicity and solvation of anionic drugs, Chem. Eur. J., 8, 3478-3484 (2002). https://doi.org/10.1002/1521-3765(20020802)8:15<3478::AID-CHEM3478>3.0.CO;2-U
  12. R. Gulaboski, F. Borges, C. M. Pereira, M. N. D. S. Cordeiro, J. Garrido, and A. F. Silva, Voltammetric insights in the transfer of ionizable drugs across biomimetic membranes - Recent achievements, Comb. Chem. High Throughput Screen., 10, 514-526 (2007). https://doi.org/10.2174/138620707782152399
  13. S. M. Ulmeanu, H. Jensen, G. Bouchard, P.-A. Carrupt, and H. H. Girault, Water-oil partition profiling of ionized drug molecules using cyclic voltammetry and a 96-well microfilter plate system, Pharm. Res., 20, 1317-1322 (2003). https://doi.org/10.1023/A:1025025804196
  14. J. Pang, C. Han, Y. Chao, L. Jing, H. Ji, W. Zhu, Y. Chang, and H. Li, Partitioning behavior of tetracycline in hydrophobic ionic liquids two-phase systems, Sep. Sci. Technol., 50, 1993-1998 (2015).
  15. D. W. M. Arrigan, Bioanalytical detection based on electrochemistry at interfaces between immiscible liquids, Anal. Lett., 41, 3233-3252 (2008). https://doi.org/10.1080/00032710802518197
  16. R. Gulaboski, M. N. D. S. Cordeiro, N. Milhazes, J. Garrido, F. Borges, M. Jorge, C. M. Pereira, I. Bogeski, A. H. Morales, B. Naumoski, and F. Silva, Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions, Anal. Biochem., 361, 236-243 (2007). https://doi.org/10.1016/j.ab.2006.11.006
  17. R. A. Fernandez and S. A. Dassie, Transfer of tetracyclines across the $H_2O$1,2-dichloroethane interface: Analysis of degraded products in strong acid and alkaline solutions, J. Electroanal. Chem., 585, 240-249 (2005). https://doi.org/10.1016/j.jelechem.2005.08.015
  18. F. Reymond, P.-A. Carrupt, B. Testa, and H. H. Girault, Charge and delocalisation effects on the lipophilicity of protonable drugs, Chem. Eur. J., 5, 39-47 (1999). https://doi.org/10.1002/(SICI)1521-3765(19990104)5:1<39::AID-CHEM39>3.0.CO;2-3
  19. F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Ionic partition diagrams of ionisable drug: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation, J. Electroanal. Chem., 462, 235-250 (1999). https://doi.org/10.1016/S0022-0728(98)00418-5
  20. J. Koryta, Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions-II. Progress since 1978*, Electrochim. Acta, 29, 445-452 (1984). https://doi.org/10.1016/0013-4686(84)87092-9
  21. Y. N. Kozlov and J. Koryta, Determination of tetracycline antibiotics by voltammetry at the interface of two immiscible electrolyte solutions, Anal. Lett., 16, 255-263 (1983). https://doi.org/10.1080/00032718308065166
  22. H. H. Youn, Investigation on antibiotic transfer process across an interface between two immiscible electrolyte solution, MS Thesis, Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea (2016).
  23. M. M. Hossain, H. H. Girault, and H. J. Lee, Voltammetric Studies of anion transfer reactions across a microhole array-water/PVC-NPOE gel interface, Bull. Korean Chem. Soc., 33, 1734-1740 (2012). https://doi.org/10.5012/bkcs.2012.33.5.1734
  24. I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, and H. H. Girault, Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine, J. Am. Chem. Soc., 131, 13453-13459 (2009). https://doi.org/10.1021/ja904569p
  25. S. N. Faisal, C. M. Pereira, S. Rho, and H. J. Lee, Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface, Phys. Chem. Chem. Phys., 12, 15184-15189 (2010). https://doi.org/10.1039/c0cp00750a
  26. M. A. Deryabina, S. H. Hansen, and H. Jensen, Molecular interactions in lipophilic environments studied by electrochemistry at interfaces between immiscible electrolyte solutions, Anal. Chem., 80, 203-208 (2008). https://doi.org/10.1021/ac071276t
  27. H. R. Kim, C. M. Pereira, H. Y. Han, and H. J. Lee, Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications, Anal. Chem., 87, 5356-5362 (2015). https://doi.org/10.1021/acs.analchem.5b00653
  28. L. J. Leeson, J. E. Krueger, and R. A. Nash, Concerning the structural assignment of the second and third acidity constants of the tetracycline antibiotics, Tetrahedron Lett., 18, 1155-1160 (1963).
  29. N. E. Rigler, S. P. Bag, D. E. Leyden, J. L. Sudmeier, and C. N. Reilley, Determination of a Protonation Scheme of Tetracycline Using Nuclear Magnetic Resonance, Anal. Chem., 37, 872-875 (1965). https://doi.org/10.1021/ac60226a022
  30. M. A.-J. Mohammed-Ali, Stabiblity Study of tetracycline drug in acidic and alkaline solutions by colorimetric method, J. Chem. Pharm. Res., 4, 1319-1326 (2012).
  31. J. L. Colaizzi and P. R. Klink, pH-Partition behavior of tetracyclines, J. Pharm. Sci., 58, 1184-1189 (1969). https://doi.org/10.1002/jps.2600581003
  32. A. Molina, C. Serna, J. A. Ortuno, J. Gonzalez, E. Torralba, and A. Gil, Differential pulse voltammetry for ion transfer at liquid membranes with two polarized interfaces, Anal. Chem., 81, 4220-4225 (2009). https://doi.org/10.1021/ac802503b
  33. J. A. Ortuo, C. Serna, A. Molina, and A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem., 78, 8129-8133 (2006). https://doi.org/10.1021/ac061224o
  34. S. Ulmeanu, H. J. Lee, D. J. Fermin, H. H. Girault, and Y. Shao, Voltammetry at a liquid liquid interface supported on a metallic electrode, Electrochem. Commun., 3, 219-223 (2001). https://doi.org/10.1016/S1388-2481(01)00138-2
  35. V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios, J. Am. Chem. Soc., 123, 10684-10690 (2001). https://doi.org/10.1021/ja015914f
  36. J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: drug lipophilicity and quantification, Anal. Chem., 85, 1582-1590 (2013). https://doi.org/10.1021/ac3028245
  37. H.-T. Lam, C. M. Pereira, C. Roussel, P.-A. Carrupt, and H. H. Girault, Immobilized pH gradient gel cell to study the ph dependence of drug lipophilicity, Anal. Chem., 78, 1503-1508 (2006). https://doi.org/10.1021/ac051808a
  38. P. Peljo and H. H. Girault, Liquid/liquid interfaces, electrochemistry at, Encyclopedia of Analytical Chemistry, pp. 1-11, John Wiley & Sons (2012).