DOI QR코드

DOI QR Code

Development of Monolithic Catalyst System with Co-Ru-Zr for CO2 (dry) Reforming of Methane : Enhanced Coke Tolerance

  • Received : 2017.01.18
  • Accepted : 2017.04.11
  • Published : 2017.09.30

Abstract

To verify the viability of Co, Ru and Zr-based catalyst for $CO_2$ (dry) reforming reaction, catalysts were fabricated using cordierite, silicon carbide and rota monolithic substrates, and they were compared with the conventional $Co-Ru-Zr/SiO_2$ catalyst in terms of performance and durability. Cordierite monolith was showed high activity with the least amount of active component. In addition, when Cordierite monolith was coated with Co-Ru-Zr in various ways, most excellent performance was showed at a precursor solution coating method. In particular, when 0.9 wt% Co-Ru-Zr/Cordierite was used for reaction, it was observed that 95% $CO_2$ conversion was maintained for 300 h at $900^{\circ}C$.

Keywords

References

  1. Zanganeh, K. E., Shafeen, A., Salvador, C., Beigzadeh, A., and Abbassi, M., "$CO_2$ Processing and Multi-pollutant Control for Oxy-Fuel Combustion Systems using and Advanced $CO_2$ Capture and Compression Unit ($CO_2CCU$)," Energy Procedia, 4, 1018-1025 (2011). https://doi.org/10.1016/j.egypro.2011.01.150
  2. Nikoo, M. K., and Amin, N., "Thermodynamic Analysis of Carbon Dioxide Reforming of Methane in View of Solid Carbon Formation," Fuel Proc. Technol., 92, 678-691 (2011). https://doi.org/10.1016/j.fuproc.2010.11.027
  3. Wang, N., Chu, W., Huang, L., and Zhang, T., "Effects of Ce/Zr Ratio on the Structure and Performances of Co-$Ce_{1-x}\;Zr_xO_2$ Catalysts for Carbon Dioxide Reforming of Methane," J. Nat. Gas Chem., 19, 117-122 (2010). https://doi.org/10.1016/S1003-9953(09)60055-4
  4. Yokota, S., Okumura, K., and Niwa, M., "Support Effect of Metal Oxide on Rh Catalysts in the $CH_4-CO_2$ Reforming Reaction," Catal. Lett., 84, 131-134 (2002). https://doi.org/10.1023/A:1021097206196
  5. Asami, K., Li, Fujimoto, X. K., Koyama, Y., Sakurama, A., Kometani, N., and Yonezawa, Y., "$CO_2$ Reforming of $CH_4$ over Ceria-Supported Metal Catalysts," Catal. Today, 84, 27-31 (2003). https://doi.org/10.1016/S0920-5861(03)00297-9
  6. Pavolova, S., Kapokova, L., Bunina, P., Alikina, G., Sazonova, N., Krieger, T., Ishchenko, A., Rogov, V., Gulyaev, R., Sadykov, V., and Mirodatos, C., "Syngas Production by $CO_2$ Reforming of Methane using $LnFeNi(Ru)O_3$ Perovskites as Precursors of Robust Catalysts," Catal. Sci. & Technol., 2, 2099-2108 (2012). https://doi.org/10.1039/c2cy20054f
  7. Pakhare, D., Shaw, C., Haynes, D., Shekhawat, D., and Spivey, J., "Effect of Reaction Temperature on Activity of Pt-and Ru-substituted Lanthanum Zirconate Pyrochlores Pyrochlores ($La_2Zr_2O_7$) for dry ($CO_2$) Reforming of Methane (DRM)," J. $CO_2$ Utilization, 1, 37-42 (2013). https://doi.org/10.1016/j.jcou.2013.04.001
  8. Daza, C. E., Gallego, J., Moreno, J. A., Mondragon, F., Moreno, S., and Molina, R., "$CO_2$ Reforming of Methane over Ni/Mg/Al/Ce Mixed Oxides, Catal. Today, 133, 357-366 (2008).
  9. Garcia, V., Fernandez, J. J., Ruiz, W., Mondragon, F., and Moreno, A., "Effect of MgO Addition on the Basicity of Ni/$ZrO_2$ and on Its Catalytic Activity in Carbon Dioxide Reforming of Methane," Catal. Commun., 11, 240-246 (2009). https://doi.org/10.1016/j.catcom.2009.10.003
  10. Barroso-Quiroga, M. M., and Castro-Luna, A. E., "Catalytic Activity and Effect of Modifiers on Ni-based Catalysts for the Dry Reforming of Methane," Int. J Hydro. Energy, 35, 6052-6056 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.073
  11. Chen, W., Zhao, G., Xue, Q., Chen, L., and Lu, Y., "High Carbon-resistance Ni/$CeAlO_3-Al_2O_3$ Catalyst for $CH_4/CO_2$ Reforming," Appl. Catal. B: Environ., 136, 260-268 (2013).
  12. Juan-Juan, J.. Roman-Martinez, M., and Illan-Gomez, M., "Nickel Catalyst Activation in the Carbon Dioxide Reforming of Methane: Effect of Pretreatments," Appl. Catal. A: General, 355, 27-32 (2009). https://doi.org/10.1016/j.apcata.2008.10.058
  13. Koo, K. Y., Roh, H., Jung, U. H., Seo, D. J., Seo, Y., and Yoon, W. L., "Combined $H_2O$ and $CO_2$ Reforming of $CH_4$ over Nano-Sized Ni/MgO-$Al_2O_3$ Catalysts for Synthesis Gas Production for Gas to Liquid (GTL) : Effect of Mg/Al Mixed Ratio on Coke Formation," Catal. Today, 146, 166-171 (2009). https://doi.org/10.1016/j.cattod.2009.02.002
  14. Zhang, J. Wang, H., and Dalai, A. K., "Development of Stable Bimetallic Catalysts for Carbon Dioxide Reforming of Methane," J. Catal., 249, 300-310 (2007). https://doi.org/10.1016/j.jcat.2007.05.004
  15. Ruckenstein, E., and Wang, H., "Carbon Deposition and Catalytic Deactivation during $CO_2$ Reforming of $CH_4$ over $Co/{\gamma}-Al_2O-3$ Catalysts," J. Catal., 205, 289-293 (2002). https://doi.org/10.1006/jcat.2001.3458
  16. Takanabe, K., Nagaoka, K., Nariai, K., and Aika, K., "Titania-supported Cobalt and Nickel Bimetallic Catalysts for Carbon Dioxide Reforming of Methane," J. Catal., 232, 268-275 (2005). https://doi.org/10.1016/j.jcat.2005.03.011
  17. San-Jose-Alonso, D., Juan-Juan, J., Illan-Gomez, M., and Roman-Martinez, M., "Ni, Co and Bimetallic Ni-Co Catalysts for the Dry Reforming of Methane," Appl. Catal. A: General, 371, 54-59 (2009). https://doi.org/10.1016/j.apcata.2009.09.026
  18. Hou, Z., and Yashima, T., "Supported Co Catalysts for Methane Reforming with $CO_2$," Reac. Kinetics and Catal. Lett, 81, 153-159 (2004). https://doi.org/10.1023/B:REAC.0000016529.84565.e5
  19. Ruckenstein, E., and Wang, H., "Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Cobalt Catalysts," Appl. Catal. A: General, 204, 257-263 (2000). https://doi.org/10.1016/S0926-860X(00)00674-8
  20. Trepanier, M., Tavasoli, A., Dalai, A. K., and Abatzoglou, N., "Co, Ru and K Loadings Effects on the Activity and Selectivity of Carbon Nanotubes Supported Cobalt Catalyst in Fischer-Tropsch Synthesis," Appl. Catal. A: General, 353, 193-202 (2009). https://doi.org/10.1016/j.apcata.2008.10.061
  21. All, S., Chen, B., and Goodwin, J., "Zr Promotion of Co/$SiO_2$ for Fischer-Tropsch Synthesis," J. Catal., 157, 35-41 (1995). https://doi.org/10.1006/jcat.1995.1265
  22. Lee, J.. You, Y.. Ahn, H.. Hong, J.. Kim, S.. Chang, T.. and Suh, J.. "The Deactivation Study of Co-Ru-Zr Catalyst Depending on Supports in the Dry Reforming of Carbon Dioxide," J. Ind. and Eng. Chem., 20, 284-289 (2014). https://doi.org/10.1016/j.jiec.2013.03.036
  23. Wang, S., Lu, G., and Millar, G. J., "Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art," Energy Fuels, 10, 896-904 (1996). https://doi.org/10.1021/ef950227t
  24. Goralski, J., Grams, J., Paryjczak, T., and Rzeznicka, I., "Investigation of the Coke Deposit on Ni-$Al_2O_3$ and Co-$Al_2O_3$ Catalysts," Carbon, 40, 2025-2028 (2002). https://doi.org/10.1016/S0008-6223(02)00145-8
  25. Lindstrom, B., and Pettersson, L. J., "Steam Reforming of Methanol over Copper-Based Monoliths: the Effects of Zirconia Doping," J. Power Sources, 106, 264-273 (2002). https://doi.org/10.1016/S0378-7753(01)01016-3
  26. Hosokawa, S., Kanai, H., Utani, K., Taniguchi, Y., Saito, Y., and Imamura, S., "State of Ru $CeO_2$ and Its Catalytic Activity in the Wet Oxidation of Acetic Acid," Appl. Catal. B, 45, 181-187 (2003). https://doi.org/10.1016/S0926-3373(03)00129-2
  27. Bouarab, R., Akdim, O., Auroux, A., Cherifi, O., and Mirodatos, C., "Effect of MgO Additive on Catalytic Properties of Co/$SiO_2$ in the Dry Reforming of Methane," Appl. Catal. A: General, 264, 161-168 (2004). https://doi.org/10.1016/j.apcata.2003.12.039
  28. Kogelbauer, A., Goodwin, JR. J. G., and Oukaci, R., "Ruthenium Promotion of Co/$Al_2O_3$ Fischer Catalysts," J. Catal., 160, 125-133 (1996). https://doi.org/10.1006/jcat.1996.0130
  29. Han, J. W., Kim, C., Park, J. S., and Lee, H., "Highly Coke-Resistant Ni Nanoparticle Catalysts with Minimal Sintering in Dry Reforming of Methane," ChemSusChem, 7, 451-456 (2014). https://doi.org/10.1002/cssc.201301134
  30. Chen, D., Christensen, K. O., Fernandez, E. O., Yu, Z., Totdal, B., Latorre, N., Monzon, A., and Holmen, A., "Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size During Methane Decomposition," J. Catal., 229, 82-96 (2005). https://doi.org/10.1016/j.jcat.2004.10.017