DOI QR코드

DOI QR Code

A Study on the Role of -SO3- Ions in the Dehydration Limit of Poly(styrene-co-styrenesulfonic acid) Membrane

  • Ko, Kwang-Hwan (Department of Biochemical and Polymer Engineering, Chosun University) ;
  • Kim, Joon-Seop (Department of Biochemical and Polymer Engineering, Chosun University) ;
  • Lee, Chang Hoon (Department of Biochemical and Polymer Engineering, Chosun University)
  • Received : 2017.08.23
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

In this work, the effect of low-temperature dehydration of a poly(styrene-co-styrenesulfonic acid) (PSSA) membrane was investigated by differential scanning calorimetry, fourier transform infrared spectroscopy (FT-IR), electron magnetic resonancespectroscopy (EMR), and $^1H$- and $^{13}C$ solid-state nuclear magnetic resonance spectroscopy. These analyses were performed at room temperature for powdered PSSA specimens with and without dehydration and the following key observations were made. First, FT-IR analysis showed that low-temperature dehydration not only transformed the [${SO_3}^-{\cdots}H^+$] ionic pair in the non-hydrated PSSA to an $SO_3H$ group, but also induced the formation of -C=C- double bonds in the dehydrated PSSA. Second, the ${-SO_3}^{\bullet}$ radical was unambiguously identified by EMR spectroscopy. Third, H-abstraction was detected by $^1H$ magic-angle spinning spectroscopy. Finally, an unexpected color shift from white for the non-hydrated PSSA to a yellowish brown for the dehydrated sample was observed. In order to explain these experimental results, it was proposed that the formation of the intermediate hydrogen ($H^{\bullet}$) or hydroxyl radical ($HO^{\bullet}$) species was initiated by the dehydration process. The sespecies attacked the $SO_3H$ group and the tertiary proton at the ${\alpha}-carbon$, resulting in the formation of $-SO^{\bullet}$ radicals and -C=C- double bonds, which correlated with the color shift in the dehydrated PSSA sample. The semechanisms are useful for understanding the simultaneous loss of an aromatic ring and -SO- groups in the PSSA fuel cell membrane.

Keywords

References

  1. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology", Chem. Rev., 104, 4637 (2004). https://doi.org/10.1021/cr020715f
  2. J. Ostrowska and A. Narebska, "Infrared study of hydration and association of functional groups in a perfluorinatedNafion membrane", Collois & Polymer Sci., 261, 93 (1983) https://doi.org/10.1007/BF01410686
  3. S. J. Paddison, "The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes", J. New Mater. Mater. Electrochem. Systems, 4, 197 (2001).
  4. A. Gruger, A. Regis, T. Schmatko, and P. Colomban, "Nanostructure of $^Nafion{(R)}$ membranes at different states of hydration: An IR and Raman study", Vibrational Spectroscopy, 26, 215 (2001). https://doi.org/10.1016/S0924-2031(01)00116-3
  5. S. J. Paddison and R. Paul,"The nature of proton transport in fully hydrated $^Nafion{(R)}$", Phys. Chem. Chem. Phys., 4, 1158 (2002). https://doi.org/10.1039/b109792j
  6. M. F. H. Schuster and W. H. Meyer, "Anhydrous Proton-Conducting Polymers", Annul Rev. Mater.Research, 33, 289 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.155102
  7. R. Devanathan, A. Venkatnathan, and M. Dupris, "Atomistic Simulation of Nafion Membrane. 2. Dynamics of Water Molecules and Hydronium Ions", J. Phys. Chem. B, 111, 13006 (2007). https://doi.org/10.1021/jp0761057
  8. A. Eisenberg and J.-S. Kim, "Introduction to Ionomers", John Wiley & Sons, Inc., New York (1998).
  9. H. S. Makowski, R. D. Lundberg, and G. H. Singhal, "Flexible polymeric compositions comprising a normally plastic polymer sulfonated to about 0.2 to about 10 mole % sulfonate", U.S. Patent 3870841 (1975).
  10. L. Dogliotti and E. Hayon, "Optical Spectrum of $SO_3\;^-$; Radicals produced from the Photolysis of Dithionate Ions in Solution", Nature, 218, 949 (1968). https://doi.org/10.1038/218949a0
  11. C. H. Lee and J.-S. Kim, "Apparent low-field microwave absorption properties of styrene-based copolymers containing acid groups", J. Appl. Polym. Sci., 110, 3355 (2008). https://doi.org/10.1002/app.28947
  12. R. Buzzoni, S. Bordiga, G. Ricchiardi, G. Spoto, and A. Zecchina, "Interaction of $H_2O$, $CH_3OH$, $(CH_3)_2O$, $CH_3CN$, and Pyridine with the Superacid Perfluorosulfonic Membrane Nafion: An IR and Raman Study", J. Phys. Chem., 99, 11937 (1995). https://doi.org/10.1021/j100031a023
  13. G. Zundel, "Hydration and intermolecular interaction: infrared investigations with polyelectrolyte membranes", Academic press, New York (2012).
  14. I.-W. Shim and W. M. Risen Jr, "Spectral and Thermal Studies of Transition Metal PSSA Ionomers", Bull. Korean Chem. Soc., 9, 368 (1988).
  15. D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, and G. D. Stucky, "Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups", Chemistry of Materials, 12, 2448 (2000). https://doi.org/10.1021/cm0010304
  16. G. Ye, B. Fortier-McGill, J. W. Traer, A. Czardybon, and R. Goward, Macromol, "Probing Proton Mobility in Polyvinazene and its Sulfonated Derivatives Using $^{1}H$ Solid-State NMR", Chem. Phys., 208, 2076 (2007).
  17. V. I. Volkov, A. I. Rebrov, E. A. Sanginov, E. M. Anokhin, S. L. Shestakov, A. A. Pavlov, A. V. Maksimychev, and Y. A. Dobrovol, "Mechanism of proton conductivity in polyvinyl alcohol-phenolsulfonic acid membranes from 1H and $^{13}C$ NMR data", Russ. J. Electrochem., 45, 374 (2009). https://doi.org/10.1134/S102319350904003X
  18. G. Ye, N. Janzen, and G. R. Goward, "Solid-State NMR Study of Two Classic Proton Conducting Polymers: Nafion and Sulfonated Poly(ether ether ketone)s", Macromolecules, 39, 3283 (2006). https://doi.org/10.1021/ma0523825
  19. H. Koller, E. Gunter, and R. A. van Santen, "The dynamics of hydrogen bonds and proton transfer in zeolites - joint vistas from solid-state NMR and quantum chemistry", Top. Catal., 9, 163 (1999). https://doi.org/10.1023/A:1019131126634
  20. R. Kanthasamy, I. Mbaraka, B. Shanks, and S. Larsen, "Solid-State MAS NMR Studies of Sulfonic Acid-Functionalized SBA-15", Appl. Magn. Reson., 32, 513 (2007). https://doi.org/10.1007/s00723-007-0034-z
  21. C. R. Martins, F. Hallwass, Y. M. B. De Almeida, and M.-A. De Paoli, "Solid-State $^{13}C$ NMR Analysis of Sulfonated Polystyrene", Ann. Magn. Reson., 6, 46 (2007).
  22. T. Zyung and J.-J. Kim, "Photodegradation of poly(pphenylenevinylene) by laser light at the peak wavelength of electroluminescence", Appl. Phys. Lett., 67, 3420 (1995). https://doi.org/10.1063/1.115266
  23. H. Mochizuki, T. Mizokuro, N. Tanigaki, X. Mo, and T. Hiraga, "Pattern Doping into Non-Substituted Poly(p-phenylenevinylene) by a Simple Vacuum Process for a Multicolored Luminescence Medium", Polymer Journal, 38, 73 (2006). https://doi.org/10.1295/polymj.38.73
  24. S. Chuangchote, T. Srikhirin, and P. Supaphol, "Color Change of Electrospun Polystyrene/MEH-PPV Fibers from Orange to Yellow through Partial Decomposition of MEH Side Groups", Macromol. Rapid Commun., 28, 651 (2007). https://doi.org/10.1002/marc.200600769
  25. J. K. Pandey, K. Raghunatha Reddy, A. Pratheep Kumar, and R. P. Singh, "An overview on the degradability of polymer nanocomposites", Polym. Degrad. Stab., 88, 234 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.09.013
  26. F. N. Bchi, B. Gupta, O. Haas, and G. G. Scherer, "Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells", Electrochim. Acta, 40, 345 (1995). https://doi.org/10.1016/0013-4686(94)00274-5
  27. M. Watanabe, "Structure of ion exchange membrane", U.S. Patent. 5246792 (1993).
  28. Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, "Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes", J. Memb. Sci., 154, 175 (1999). https://doi.org/10.1016/S0376-7388(98)00282-8
  29. J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, and H. Zhang, "Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells", Phys. Chem. Chem. Phys., 5, 611 (2003). https://doi.org/10.1039/b209020a