DOI QR코드

DOI QR Code

Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System

  • Received : 2017.02.21
  • Accepted : 2017.04.04
  • Published : 2017.09.30

Abstract

Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the "obesity paradox," namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological "quality" of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.

Keywords

Acknowledgement

Supported by : British Heart Foundation, NovoNordisk Foundation

References

  1. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983;67:968-77. https://doi.org/10.1161/01.CIR.67.5.968
  2. Sowers JR. Obesity as a cardiovascular risk factor. Am J Med 2003;115 Suppl 8A:37S-41S. https://doi.org/10.1016/j.amjmed.2003.08.012
  3. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol 2013;62:921-5. https://doi.org/10.1016/j.jacc.2013.06.027
  4. Greif M, Becker A, von Ziegler F, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:781-6. https://doi.org/10.1161/ATVBAHA.108.180653
  5. McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 2010;59:2465-73. https://doi.org/10.2337/db10-0678
  6. Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr 2010;64:2-5. https://doi.org/10.1038/ejcn.2009.139
  7. Nagarajan V, Kohan L, Holland E, Keeley EC, Mazimba S. Obesity paradox in heart failure: a heavy matter. ESC Heart Fail 2016;3:227-34. https://doi.org/10.1002/ehf2.12120
  8. Park J, Ahmadi SF, Streja E, et al. Obesity paradox in end-stage kidney disease patients. Prog Cardiovasc Dis 2014;56:415-25. https://doi.org/10.1016/j.pcad.2013.10.005
  9. Antonopoulos AS, Oikonomou EK, Antoniades C, Tousoulis D. From the BMI paradox to the obesity paradox: the obesity-mortality association in coronary heart disease. Obes Rev 2016;17:989-1000. https://doi.org/10.1111/obr.12440
  10. Akoumianakis I, Tarun A, Antoniades C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br J Pharmacol 2016 [Epub ahead of print].
  11. Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res 2016;118:1786-807. https://doi.org/10.1161/CIRCRESAHA.115.306885
  12. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006;64:355-65.
  13. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology 2012;58:15-23. https://doi.org/10.1159/000321319
  14. Hassan M, Latif N, Yacoub M. Adipose tissue: friend or foe? Nat Rev Cardiol 2012;9:689-702. https://doi.org/10.1038/nrcardio.2012.148
  15. Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation 2015;132:1639-47. https://doi.org/10.1161/CIRCULATIONAHA.114.015000
  16. Marinou K, Hodson L, Vasan SK, et al. Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men. Diabetes Care 2014;37:821-9. https://doi.org/10.2337/dc13-1353
  17. Jo J, Gavrilova O, Pack S, et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLOS Comput Biol 2009;5:e1000324. https://doi.org/10.1371/journal.pcbi.1000324
  18. Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci 2015;52:301-13. https://doi.org/10.3109/10408363.2015.1041582
  19. Tanaka N, Takahashi S, Matsubara T, et al. Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem 2015;290:3092-105. https://doi.org/10.1074/jbc.M114.605980
  20. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277-359. https://doi.org/10.1152/physrev.00015.2003
  21. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10:24-36. https://doi.org/10.1038/nrendo.2013.204
  22. Tam CS, Lecoultre V, Ravussin E. Brown adipose tissue: mechanisms and potential therapeutic targets. Circulation 2012;125:2782-91. https://doi.org/10.1161/CIRCULATIONAHA.111.042929
  23. Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab 2013;305:E567-72. https://doi.org/10.1152/ajpendo.00250.2013
  24. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252-63. https://doi.org/10.1038/nm.3361
  25. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest 2017;127:74-82. https://doi.org/10.1172/JCI88883
  26. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003;112:1785-8. https://doi.org/10.1172/JCI20514
  27. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010;11:11-8. https://doi.org/10.1111/j.1467-789X.2009.00623.x
  28. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010;316:129-39. https://doi.org/10.1016/j.mce.2009.08.018
  29. Molica F, Morel S, Kwak BR, Rohner-Jeanrenaud F, Steffens S. Adipokines at the crossroad between obesity and cardiovascular disease. Thromb Haemost 2015;113:553-66. https://doi.org/10.1160/TH14-06-0513
  30. Margaritis M, Antonopoulos AS, Digby J, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013;127:2209-21. https://doi.org/10.1161/CIRCULATIONAHA.112.001133
  31. Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol 2012;165:670-82. https://doi.org/10.1111/j.1476-5381.2011.01479.x
  32. Mazurek T, Opolski G. Pericoronary adipose tissue: a novel therapeutic target in obesity-related coronary atherosclerosis. J Am Coll Nutr 2015;34:244-54. https://doi.org/10.1080/07315724.2014.933685
  33. McAninch EA, Fonseca TL, Poggioli R, et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity (Silver Spring) 2015;23:1267-78. https://doi.org/10.1002/oby.21059
  34. Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 2014;3:e000582.
  35. Mazurek T, Kiliszek M, Kobylecka M, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 2014;113:1505-8. https://doi.org/10.1016/j.amjcard.2014.02.005
  36. Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460-6. https://doi.org/10.1161/01.CIR.0000099542.57313.C5
  37. Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 2005;365:1817-20. https://doi.org/10.1016/S0140-6736(05)66585-3
  38. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 2011;22:450-7. https://doi.org/10.1016/j.tem.2011.07.003
  39. Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C. Adiponectin: from obesity to cardiovascular disease. Obes Rev 2009;10:269-79. https://doi.org/10.1111/j.1467-789X.2009.00571.x
  40. Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol 2016 [Epub ahead of print].
  41. Kobashi C, Urakaze M, Kishida M, et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res 2005;97:1245-52. https://doi.org/10.1161/01.RES.0000194328.57164.36
  42. Ouedraogo R, Gong Y, Berzins B, et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Invest 2007;117:1718-26. https://doi.org/10.1172/JCI29623
  43. Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004;94:e27-31.
  44. Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 2015;64:2207-19. https://doi.org/10.2337/db14-1011
  45. Antonopoulos AS, Margaritis M, Verheule S, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by $PPAR-{\gamma}$/adiponectin signalling. Circ Res 2016;118:842-55. https://doi.org/10.1161/CIRCRESAHA.115.307856
  46. Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005;11:1096-103. https://doi.org/10.1038/nm1295
  47. Essick EE, Wilson RM, Pimentel DR, et al. Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes. PLoS One 2013;8:e68697. https://doi.org/10.1371/journal.pone.0068697
  48. Joki Y, Ohashi K, Yuasa D, et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun 2015;459:124-30. https://doi.org/10.1016/j.bbrc.2015.02.081
  49. Antonopoulos AS, Margaritis M, Coutinho P, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol 2014;34:2151-9. https://doi.org/10.1161/ATVBAHA.114.303828
  50. Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000;62:413-37. https://doi.org/10.1146/annurev.physiol.62.1.413
  51. Sweeney G. Cardiovascular effects of leptin. Nat Rev Cardiol 2010;7:22-9. https://doi.org/10.1038/nrcardio.2009.224
  52. Koh KK, Park SM, Quon MJ. Leptin and cardiovascular disease: response to therapeutic interventions. Circulation 2008;117:3238-49. https://doi.org/10.1161/CIRCULATIONAHA.107.741645
  53. Tumer N, Erdos B, Matheny M, Cudykier I, Scarpace PJ. Leptin antagonist reverses hypertension caused by leptin overexpression, but fails to normalize obesity-related hypertension. J Hypertens 2007;25:2471-8. https://doi.org/10.1097/HJH.0b013e3282e9a9fd
  54. Zuo G, Du X, Zheng L, Wang C, Wang K, Li Y. The role of leptin in the ventricular remodeling process and its mechanism. Int J Clin Exp Med 2015;8:5553-8.
  55. Martinez-Martinez E, Jurado-Lopez R, Valero-Munoz M, et al. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity. J Hypertens 2014;32:1104-14. https://doi.org/10.1097/HJH.0000000000000149
  56. Yan W, Zhang H, Liu P, et al. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-$1{\alpha}$ signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol 2013;108:329. https://doi.org/10.1007/s00395-013-0329-1
  57. Smith CC, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM. Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 2006;149:5-13. https://doi.org/10.1038/sj.bjp.0706834
  58. Lee S, Lee HC, Kwon YW, et al. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes. Cell Metab 2014;19:484-97. https://doi.org/10.1016/j.cmet.2014.01.013
  59. Langheim S, Dreas L, Veschini L, et al. Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. Am J Physiol Heart Circ Physiol 2010;298:H746-53. https://doi.org/10.1152/ajpheart.00617.2009
  60. Jung HS, Park KH, Cho YM, et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res 2006;69:76-85. https://doi.org/10.1016/j.cardiores.2005.09.015
  61. Muse ED, Feldman DI, Blaha MJ, et al. The association of resistin with cardiovascular disease in the Multi-ethnic Study of Atherosclerosis. Atherosclerosis 2015;239:101-8. https://doi.org/10.1016/j.atherosclerosis.2014.12.044
  62. He Y, Bai XJ, Li FX, et al. Resistin may be an independent predictor of subclinical atherosclerosis formale smokers. Biomarkers 2017;22:291 -5. https://doi.org/10.1080/1354750X.2016.1252953
  63. Gencer B, Auer R, de Rekeneire N, et al. Association between resistin levels and cardiovascular disease events in older adults: the health, aging and body composition study. Atherosclerosis 2016;245:181-6. https://doi.org/10.1016/j.atherosclerosis.2015.12.004
  64. Kang S, Chemaly ER, Hajjar RJ, Lebeche D. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 2011;286:18465-73. https://doi.org/10.1074/jbc.M110.200022
  65. Rothwell SE, Richards AM, Pemberton CJ. Resistin worsens cardiac ischaemia-reperfusion injury. Biochem Biophys Res Commun 2006;349:400-7. https://doi.org/10.1016/j.bbrc.2006.08.052
  66. Chemaly ER, Hadri L, Zhang S, et al. Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. J Mol Cell Cardiol 2011;51:144-55. https://doi.org/10.1016/j.yjmcc.2011.04.006
  67. Laurikka A, Vuolteenaho K, Toikkanen V, et al. Adipocytokine resistin correlates with oxidative stress and myocardial injury in patients undergoing cardiac surgery. Eur J Cardiothorac Surg 2014;46:729-36. https://doi.org/10.1093/ejcts/ezt634
  68. Takeishi Y, Niizeki T, Arimoto T, et al. Serum resistin is associated with high risk in patients with congestive heart failure--a novel link between metabolic signals and heart failure. Circ J 2007;71:460-4. https://doi.org/10.1253/circj.71.460
  69. Tan BK, Adya R, Randeva HS. Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc Med 2010;20:143-8. https://doi.org/10.1016/j.tcm.2010.12.002
  70. Kazama K, Okada M, Yamawaki H. A novel adipocytokine, omentin, inhibits platelet-derived growth factor-BB-induced vascular smooth muscle cell migration through antioxidative mechanism. Am J Physiol Heart Circ Physiol 2014;306:H1714-9. https://doi.org/10.1152/ajpheart.00048.2014
  71. Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun 2011;408:339-43. https://doi.org/10.1016/j.bbrc.2011.04.039
  72. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab 2014;25:348-55. https://doi.org/10.1016/j.tem.2014.03.009
  73. Uemura Y, Shibata R, Kanemura N, et al. Adipose-derived protein omentin prevents neointimal formation after arterial injury. FASEB J 2015;29:141-51. https://doi.org/10.1096/fj.14-258129
  74. Kazama K, Okada M, Yamawaki H. Adipocytokine, omentin inhibits doxorubicin-induced H9c2 cardiomyoblasts apoptosis through the inhibition of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2015;457:602-7. https://doi.org/10.1016/j.bbrc.2015.01.032
  75. Kataoka Y, Shibata R, Ohashi K, et al. Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms. J Am Coll Cardiol 2014;63:2722-33. https://doi.org/10.1016/j.jacc.2014.03.032
  76. Harada K, Shibata R, Ouchi N, et al. Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis 2016;251:299-304. https://doi.org/10.1016/j.atherosclerosis.2016.07.003
  77. Saely CH, Leiherer A, Muendlein A, et al. High plasma omentin predicts cardiovascular events independently from the presence and extent of angiographically determined atherosclerosis. Atherosclerosis 2016;244:38-43. https://doi.org/10.1016/j.atherosclerosis.2015.10.100
  78. Narumi T, Watanabe T, Kadowaki S, et al. Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure. Cardiovasc Diabetol 2014;13:84. https://doi.org/10.1186/1475-2840-13-84
  79. Romacho T, Sanchez-Ferrer CF, Peiro C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm 2013;2013:946427.
  80. Formentini L, Moroni F, Chiarugi A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo. Biochem Pharmacol 2009;77:1612-20. https://doi.org/10.1016/j.bcp.2009.02.017
  81. Vallejo S, Romacho T, Angulo J, et al. Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS One 2011;6:e27299. https://doi.org/10.1371/journal.pone.0027299
  82. Li B, Zhao Y, Liu H, et al. Visfatin destabilizes atherosclerotic plaques in apolipoprotein E-deficient mice. PLoS One 2016;11:e0148273. https://doi.org/10.1371/journal.pone.0148273
  83. Lovren F, Pan Y, Shukla PC, et al. Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis. Am J Physiol Endocrinol Metab 2009;296:E1440-9. https://doi.org/10.1152/ajpendo.90780.2008
  84. Yamawaki H, Hara N, Okada M, Hara Y. Visfatin causes endothelium-dependent relaxation in isolated blood vessels. Biochem Biophys Res Commun 2009;383:503-8. https://doi.org/10.1016/j.bbrc.2009.04.074
  85. Xiao J, Sun B, Li M, Wu Y, Sun XB. A novel adipocytokine visfatin protects against H(2)O(2) -induced myocardial apoptosis: a missing link between obesity and cardiovascular disease. J Cell Physiol 2013;228:495-501. https://doi.org/10.1002/jcp.24257
  86. Lim SY, Davidson SM, Paramanathan AJ, Smith CC, Yellon DM, Hausenloy DJ. The novel adipocytokine visfatin exerts direct cardioprotective effects. J Cell Mol Med 2008;12:1395-403. https://doi.org/10.1111/j.1582-4934.2008.00332.x
  87. Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev 2011;27:515-27. https://doi.org/10.1002/dmrr.1201
  88. Vanhoutte PM. Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 2009;73:595-601. https://doi.org/10.1253/circj.CJ-08-1169
  89. Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 2007;115:972-80. https://doi.org/10.1161/CIRCULATIONAHA.106.665893
  90. Hung WC, Yu TH, Hsu CC, et al. Plasma visfatin levels are associated with major adverse cardiovascular events in patients with acute ST-elevation myocardial infarction. Clin Invest Med 2015;38:E100-9. https://doi.org/10.25011/cim.v38i3.22705
  91. McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 2009;6:410-7. https://doi.org/10.1038/nrcardio.2009.57
  92. Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 2014;22:147-51. https://doi.org/10.1097/CRD.0000000000000021
  93. Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 2013;227:216-21. https://doi.org/10.1016/j.atherosclerosis.2012.12.029
  94. Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD. Cardiomyocyte $NF-{\kappa}B$ p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 2011;89:129-38. https://doi.org/10.1093/cvr/cvq274
  95. Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007;115:1398-407. https://doi.org/10.1161/CIRCULATIONAHA.106.643585
  96. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004;94:1543-53. https://doi.org/10.1161/01.RES.0000130526.20854.fa
  97. Hurlimann D, Forster A, Noll G, et al. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 2002;106:2184-7. https://doi.org/10.1161/01.CIR.0000037521.71373.44
  98. Wong M, Oakley SP, Young L, et al. Infliximab improves vascular stiffness in patients with rheumatoid arthritis. Ann Rheum Dis 2009;68:1277-84. https://doi.org/10.1136/ard.2007.086157
  99. Kume K, Amano K, Yamada S, Hatta K, Ohta H, Kuwaba N. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol 2011;38:2169-71. https://doi.org/10.3899/jrheum.110340
  100. Greenberg JD, Furer V, Farkouh ME. Cardiovascular safety of biologic therapies for the treatment of RA. Nat Rev Rheumatol 2011;8:13-21.
  101. Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 2013;378:1-14. https://doi.org/10.1016/j.mce.2012.06.021
  102. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014;2014:689360.
  103. Cooper SA, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007;293:H2009-23. https://doi.org/10.1152/ajpheart.00522.2007
  104. Ellmers LJ, Rademaker MT, Charles CJ, Yandle TG, Richards AM. (Pro)renin receptor blockade ameliorates cardiac injury and remodeling and improves function after myocardial infarction. J Card Fail 2016;22:64-72. https://doi.org/10.1016/j.cardfail.2015.08.341
  105. Nguyen Dinh Cat A, Antunes TT, Callera GE, et al. Adipocyte-specific mineralocorticoid receptor overexpression in mice is associated with metabolic syndrome and vascular dysfunction: role of redox-sensitive PKG-1 and Rho kinase. Diabetes 2016;65:2392-403. https://doi.org/10.2337/db15-1627
  106. von Lueder TG, Krum H. RAAS inhibitors and cardiovascular protection in large scale trials. Cardiovasc Drugs Ther 2013;27:171-9. https://doi.org/10.1007/s10557-012-6424-y
  107. Venteclef N, Guglielmi V, Balse E, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 2015;36:795-805a. https://doi.org/10.1093/eurheartj/eht099
  108. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res 2014;102:205-13. https://doi.org/10.1093/cvr/cvu045
  109. Thanassoulis G, Massaro JM, O'Donnell CJ, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol 2010;3:345-50. https://doi.org/10.1161/CIRCEP.109.912055
  110. Reilly SN, Jayaram R, Nahar K, et al. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 2011;124:1107-17. https://doi.org/10.1161/CIRCULATIONAHA.111.029223

Cited by

  1. Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer vol.19, pp.6, 2017, https://doi.org/10.3390/ijms19061756
  2. Perivascular adipose tissue and coronary atherosclerosis vol.104, pp.20, 2017, https://doi.org/10.1136/heartjnl-2017-312324
  3. The role of perivascular adipose tissue in the development of cardiovascular diseases. The importance of diagnosis for assessing the risk stratification of cardiovascular diseases vol.91, pp.4, 2017, https://doi.org/10.26442/00403660.2019.04.000186
  4. The role of obesity in the development of atrial fibrillation: current problem status vol.18, pp.4, 2017, https://doi.org/10.15829/1728-8800-2019-4-109-114
  5. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality vol.22, pp.1, 2017, https://doi.org/10.3892/mmr.2020.11127
  6. Plasticizers and Cardiovascular Health: Role of Adipose Tissue Dysfunction vol.11, pp.None, 2021, https://doi.org/10.3389/fphar.2020.626448