DOI QR코드

DOI QR Code

Novel Concept of a Heart-Gut Axis in the Pathophysiology of Heart Failure

  • Kamo, Takehiro (Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo) ;
  • Akazawa, Hiroshi (Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo) ;
  • Suzuki, Jun-ichi (Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo) ;
  • Komuro, Issei (Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo)
  • Received : 2017.02.01
  • Accepted : 2017.03.01
  • Published : 2017.09.30

Abstract

Patients with heart failure (HF) have structural and functional changes of the gut as a result of microcirculatory disturbances. A disrupted gut epithelial barrier may lead to translocation of microbial products into systemic circulation, possibly aggravating HF by inducing inflammatory responses. Gut microbiota play an essential role in the maintenance of host homeostasis because large quantities of their gene products complement host physiological processes. Emerging evidence has suggested the potential clinical significance of gut microbiota in the pathophysiology of HF. Imbalances of gut microbe-derived metabolites can contribute to cardiac dysfunction and other morbidities in patients with HF. Therapeutic research for HF through targeting microbiota is under way. Thus, the novel concept of a heart-gut axis may lead to breakthroughs in the development of innovative diagnostics and therapeutic approaches for HF.

Keywords

Acknowledgement

Supported by : Japan Society for the Promotion of Science

References

  1. Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 2013;62:485-95. https://doi.org/10.1016/j.jacc.2013.04.070
  2. Rogler G, Rosano G. The heart and the gut. Eur Heart J 2014;35:426-30. https://doi.org/10.1093/eurheartj/eht271
  3. Nagatomo Y, Tang WH. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 2015;21:973-80. https://doi.org/10.1016/j.cardfail.2015.09.017
  4. Sundaram V, Fang JC. Gastrointestinal and liver issues in heart failure. Circulation 2016;133:1696-703. https://doi.org/10.1161/CIRCULATIONAHA.115.020894
  5. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One 2017;12:e0174099. https://doi.org/10.1371/journal.pone.0174099
  6. Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol 2014;64:1092-102. https://doi.org/10.1016/j.jacc.2014.06.1179
  7. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 2007;50:1561-9. https://doi.org/10.1016/j.jacc.2007.07.016
  8. Arutyunov GP, Kostyukevich OI, Serov RA, Rylova NV, Bylova NA. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol 2008;125:240-5. https://doi.org/10.1016/j.ijcard.2007.11.103
  9. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236-41. https://doi.org/10.1056/NEJM199007263230405
  10. Milani RV, Mehra MR, Endres S, et al. The clinical relevance of circulating tumor necrosis factor-${\alpha}$ in acute decompensated chronic heart failure without cachexia. Chest 1996;110:992-5. https://doi.org/10.1378/chest.110.4.992
  11. Rauchhaus M, Doehner W, Francis DP, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000;102:3060-7. https://doi.org/10.1161/01.CIR.102.25.3060
  12. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103:2055-9. https://doi.org/10.1161/01.CIR.103.16.2055
  13. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JTAnti-TNF Therapy Against Congestive Heart Failure Investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-${\alpha}$, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107:3133-40. https://doi.org/10.1161/01.CIR.0000077913.60364.D2
  14. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109:1594-602. https://doi.org/10.1161/01.CIR.0000124490.27666.B2
  15. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999;353:1838-42. https://doi.org/10.1016/S0140-6736(98)09286-1
  16. Peschel T, Schonauer M, Thiele H, Anker SD, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 2003;5:609-14. https://doi.org/10.1016/S1388-9842(03)00104-1
  17. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014;32:834-41. https://doi.org/10.1038/nbt.2942
  18. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157:121-41. https://doi.org/10.1016/j.cell.2014.03.011
  19. Fischbach MA, Segre JA. Signaling in host-associated microbial communities. Cell 2016;164:1288-300. https://doi.org/10.1016/j.cell.2016.02.037
  20. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375:2369-79. https://doi.org/10.1056/NEJMra1600266
  21. Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65:330-9. https://doi.org/10.1136/gutjnl-2015-309990
  22. Wang F, Li Q, Wang C, Tang C, Li J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS One 2012;7:e42027. https://doi.org/10.1371/journal.pone.0042027
  23. Phillips Campbell RB, Duffourc MM, Schoborg RV, et al. Aberrant fecal flora observed in guinea pigs with pressure overload is mitigated in animals receiving vagus nerve stimulation therapy. Am J Physiol Gastrointest Liver Physiol 2016;311:G754-62. https://doi.org/10.1152/ajpgi.00218.2016
  24. Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 2016;4:220-7. https://doi.org/10.1016/j.jchf.2015.10.009
  25. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009;106:3698-703. https://doi.org/10.1073/pnas.0812874106
  26. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016;22:1079-89. https://doi.org/10.1038/nm.4185
  27. Lekawanvijit S. Role of gut-derived protein-bound uremic toxins in cardiorenal syndrome and potential treatment modalities. Circ J 2015;79:2088-97. https://doi.org/10.1253/circj.CJ-15-0749
  28. Yang K, Wang C, Nie L, et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 2015;26:2434-46. https://doi.org/10.1681/ASN.2014060543
  29. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57-63. https://doi.org/10.1038/nature09922
  30. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575-84. https://doi.org/10.1056/NEJMoa1109400
  31. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014;124:4204-11. https://doi.org/10.1172/JCI72331
  32. Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014;64:1908-14. https://doi.org/10.1016/j.jacc.2014.02.617
  33. Tang WH, Wang Z, Shrestha K, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 2015;21:91-6. https://doi.org/10.1016/j.cardfail.2014.11.006
  34. Troseid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 2015;277:717-26. https://doi.org/10.1111/joim.12328
  35. Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart 2016;102:841-8. https://doi.org/10.1136/heartjnl-2015-308826
  36. Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 2016;9:e002314.
  37. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-15. https://doi.org/10.1056/NEJMoa1205037
  38. Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163:1585-95. https://doi.org/10.1016/j.cell.2015.11.055
  39. Karbach SH, Schonfelder T, Brandao I, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 2016;5:e003698.
  40. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 2012;26:1727-35. https://doi.org/10.1096/fj.11-197921
  41. Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 2014;7:491-9. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978
  42. Marques FZ, Nelson EM, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017;135:964-77. https://doi.org/10.1161/CIRCULATIONAHA.116.024545
  43. Lekawanvijit S, Kompa AR, Manabe M, et al. Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS One 2012;7:e41281. https://doi.org/10.1371/journal.pone.0041281
  44. Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol 2015;179:348-50. https://doi.org/10.1016/j.ijcard.2014.11.034
  45. Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe 2016;19:12-20. https://doi.org/10.1016/j.chom.2015.12.016

Cited by

  1. The gut microbiome and heart failure vol.34, pp.2, 2017, https://doi.org/10.1097/hco.0000000000000598
  2. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression vol.116, pp.16, 2019, https://doi.org/10.1073/pnas.1819897116
  3. Diet, the Gut Microbiome and Heart Failure vol.5, pp.2, 2019, https://doi.org/10.15420/cfr.2018.39.2
  4. The Revival of the Battle between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease vol.7, pp.6, 2017, https://doi.org/10.3390/microorganisms7060173
  5. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health vol.7, pp.1, 2017, https://doi.org/10.1186/s40168-019-0704-8
  6. Gut microbiota in coronary artery disease: a friend or foe? vol.40, pp.5, 2020, https://doi.org/10.1042/bsr20200454
  7. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey vol.10, pp.1, 2017, https://doi.org/10.1038/s41367-020-0017-1
  8. The Intestinal Perspective of COVID-19: NOS2 and AOC1 Genes as Epidemiological Factors, and a Homeopathic Approach to their Functional Improvement vol.33, pp.3, 2020, https://doi.org/10.1055/s-0040-1715601
  9. Pulmonary fibrosis alters gut microbiota and associated metabolites in mice: An integrated 16S and metabolomics analysis vol.264, pp.None, 2017, https://doi.org/10.1016/j.lfs.2020.118616
  10. Intestinal Complication With Myxomatous Mitral Valve Diseases in Chihuahuas vol.8, pp.None, 2017, https://doi.org/10.3389/fvets.2021.777579
  11. The Correlation between Gut Microbiota and Serum Metabolomic in Elderly Patients with Chronic Heart Failure vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5587428
  12. Risk Factors for Intestinal Barrier Impairment in Patients With Essential Hypertension vol.7, pp.None, 2017, https://doi.org/10.3389/fmed.2020.543698
  13. Gut–organ axis: a microbial outreach and networking vol.72, pp.6, 2017, https://doi.org/10.1111/lam.13333
  14. Sugar Fructose Triggers Gut Dysbiosis and Metabolic Inflammation with Cardiac Arrhythmogenesis vol.9, pp.7, 2021, https://doi.org/10.3390/biomedicines9070728
  15. Relationship between gut microbiota and markers of myocardial fibrosis in with chronic heart failure with preserved ejection fraction vol.20, pp.4, 2021, https://doi.org/10.15829/1728-8800-2021-2834