References
- Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000;14:839-54.
- Wilcox AJ, Weinberg CR, O'Connor JF, et al. Incidence of early loss of pregnancy. N Engl J Med 1988;319:189-94. https://doi.org/10.1056/NEJM198807283190401
- Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39:1890-900. https://doi.org/10.1016/S0735-1097(02)01886-7
- Moller JH, Taubert KA, Allen HD, Clark EB, Lauer RM. Cardiovascular health and disease in children: current status. A Special Writing Group from the Task Force on Children and Youth, American Heart Association. Circulation 1994;89:923-30. https://doi.org/10.1161/01.CIR.89.2.923
- Tong YF. Mutations of NKX2.5 and GATA4 genes in the development of congenital heart disease. Gene 2016;588:86-94. https://doi.org/10.1016/j.gene.2016.04.061
- McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012;100:253-77.
- Ramsdell AF. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 2005;288:1-20. https://doi.org/10.1016/j.ydbio.2005.07.038
- Patton EE, Zon LI. The art and design of genetic screens: zebrafish. Nat Rev Genet 2001;2:956-66. https://doi.org/10.1038/35103567
- Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012;122:2337-43. https://doi.org/10.1172/JCI60434
- Auer TO, Del BF. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014;69:142-50. https://doi.org/10.1016/j.ymeth.2014.03.027
- Driever W, Fishman MC. The zebrafish: heritable disorders in transparent embryos. J Clin Invest 1996;97:1788-94. https://doi.org/10.1172/JCI118608
- Chen JN, Fishman MC. Genetics of heart development. Trends Genet 2000;16:383-8. https://doi.org/10.1016/S0168-9525(00)02075-8
- Yelon D. Cardiac patterning and morphogenesis in zebrafish. Dev Dyn 2001;222:552-63. https://doi.org/10.1002/dvdy.1243
- Rottbauer W, Wessels G, Dahme T, et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 2006;99:323-31. https://doi.org/10.1161/01.RES.0000234807.16034.fe
- Guner-Ataman B, Paffett-Lugassy N, Adams MS, et al. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 2013;140:1353-63. https://doi.org/10.1242/dev.088351
- Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol 2011;354:123-33. https://doi.org/10.1016/j.ydbio.2011.03.028
- Schier AF, Talbot WS. Molecular genetics of axis formation in zebrafish. Annu Rev Genet 2005;39:561-613. https://doi.org/10.1146/annurev.genet.37.110801.143752
- D'Amico LA, Cooper MS. Spatially distinct domains of cell behavior in the zebrafish organizer region. Biochem Cell Biol 1997;75:563-77. https://doi.org/10.1139/o97-074
- Matsui T, Ishikawa H, Bessho Y. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish. Front Cell Dev Biol 2015;3:27.
- Okabe N, Xu B, Burdine RD. Fluid dynamics in zebrafish Kupffer's vesicle. Dev Dyn 2008;237:3602-12. https://doi.org/10.1002/dvdy.21730
- Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 2005;132:1907-21. https://doi.org/10.1242/dev.01772
- Long S, Ahmad N, Rebagliati M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 2003;130:2303-16. https://doi.org/10.1242/dev.00436
- Keegan BR, Meyer D, Yelon D. Organization of cardiac chamber progenitors in the zebrafish blastula. Development 2004;131:3081-91. https://doi.org/10.1242/dev.01185
- Keegan BR, Feldman JL, Begemann G, Ingham PW, Yelon D. Retinoic acid signaling restricts the cardiac progenitor pool. Science 2005;307:247-9. https://doi.org/10.1126/science.1101573
- Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/betacatenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 2007;104:9685-90. https://doi.org/10.1073/pnas.0702859104
- Marques SR, Lee Y, Poss KD, Yelon D. Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Dev Biol 2008;321:397-406. https://doi.org/10.1016/j.ydbio.2008.06.033
- Marques SR, Yelon D. Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Dev Biol 2009;328:472-82. https://doi.org/10.1016/j.ydbio.2009.02.010
- Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001;234:330-8. https://doi.org/10.1006/dbio.2001.0259
- Zeng XX, Wilm TP, Sepich DS, Solnica-Krezel L. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 2007;12:391-402. https://doi.org/10.1016/j.devcel.2007.01.011
- Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 1999;13:2983-95. https://doi.org/10.1101/gad.13.22.2983
- Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 2001;128:3081-94.
- Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 2005;132:1247-60. https://doi.org/10.1242/dev.01663
- Kikuchi Y, Agathon A, Alexander J, et al. Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 2001;15:1493-505. https://doi.org/10.1101/gad.892301
- Amack JD, Yost HJ. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 2004;14:685-90. https://doi.org/10.1016/j.cub.2004.04.002
- Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi Y. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 2008;135:2521-9. https://doi.org/10.1242/dev.020107
- Matsui T, Thitamadee S, Murata T, et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis. Proc Natl Acad Sci USA 2011;108:9881-6. https://doi.org/10.1073/pnas.1017248108
- Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 2009;458:651-4. https://doi.org/10.1038/nature07753
- Tanaka Y, Okada Y, Hirokawa N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 2005;435:172-7. https://doi.org/10.1038/nature03494
- Pennekamp P, Karcher C, Fischer A, et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 2002;12:938-43. https://doi.org/10.1016/S0960-9822(02)00869-2
- Takao D, Nemoto T, Abe T, et al. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev Biol 2013;376:23-30. https://doi.org/10.1016/j.ydbio.2013.01.018
- Sarmah B, Latimer AJ, Appel B, Wente SR. Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 2005;9:133-45. https://doi.org/10.1016/j.devcel.2005.05.002
- Yuan S, Zhao L, Brueckner M, Sun Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr Biol 2015;25:556-67. https://doi.org/10.1016/j.cub.2014.12.051
- Roxo-Rosa M, Jacinto R, Sampaio P, Lopes SS. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR. Biol Open 2015;4:1356-66. https://doi.org/10.1242/bio.014076
- Lahvic JL, Ji Y, Marin P, et al. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 2013;384:166-80. https://doi.org/10.1016/j.ydbio.2013.10.009
- Delling M, Indzhykulian AA, Liu X, et al. Primary cilia are not calciumresponsive mechanosensors. Nature 2016;531:656-60. https://doi.org/10.1038/nature17426
- Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 2013;188:913-22. https://doi.org/10.1164/rccm.201301-0059CI
- Rao DR, Gabriel GC, Li Y, et al. Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models. Birth Defects Res C Embryo Today 2014;102:115-25. https://doi.org/10.1002/bdrc.21067
- Kennedy MP, Omran H, Leigh MW, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007;115:2814-21. https://doi.org/10.1161/CIRCULATIONAHA.106.649038
- McGrath J, Brueckner M. Cilia are at the heart of vertebrate left-right asymmetry. Curr Opin Genet Dev 2003;13:385-92. https://doi.org/10.1016/S0959-437X(03)00091-1
- Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993;119:31-40.
- Dickmeis T, Mourrain P, Saint-Etienne L, et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 2001;15:1487-92. https://doi.org/10.1101/gad.196901
- Sakaguchi T, Kikuchi Y, Kuroiwa A, Takeda H, Stainier DY. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 2006;133:4063-72. https://doi.org/10.1242/dev.02581
- Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 2000;406:192-5. https://doi.org/10.1038/35018092
- Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 2009;323:524-7. https://doi.org/10.1126/science.1167449
- Osborne N, Brand-Arzamendi K, Ober EA, et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 2008;18:1882-8. https://doi.org/10.1016/j.cub.2008.10.061
- Liu J, Stainier DY. Zebrafish in the study of early cardiac development. Circ Res 2012;110:870-4. https://doi.org/10.1161/CIRCRESAHA.111.246504
- Zhou Y, Cashman TJ, Nevis KR, et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 2011;474:645-8. https://doi.org/10.1038/nature10094
- Fukui H, Terai K, Nakajima H, Chiba A, Fukuhara S, Mochizuki N. S1PYap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. Dev Cell 2014;31:128-36. https://doi.org/10.1016/j.devcel.2014.08.014
- Mendelson K, Evans T, Hla T. Sphingosine 1-phosphate signalling. Development 2014;141:5-9. https://doi.org/10.1242/dev.094805
- Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta 2013;1831:213-22. https://doi.org/10.1016/j.bbalip.2012.09.004
- Clay H, Wilsbacher LD, Wilson SJ, et al. Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 2016;418:157-65. https://doi.org/10.1016/j.ydbio.2016.06.024