DOI QR코드

DOI QR Code

Spatial Allocation and Specification of Cardiomyocytes during Zebrafish Embryogenesis

  • Fukui, Hajime (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute) ;
  • Chiba, Ayano (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute) ;
  • Miyazaki, Takahiro (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute) ;
  • Takano, Haruko (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute) ;
  • Ishikawa, Hiroyuki (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute) ;
  • Omori, Toyonori (Management office, National Center for Child Health and Development) ;
  • Mochiuzki, Naoki (Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute)
  • Received : 2016.07.26
  • Accepted : 2016.10.13
  • Published : 2017.03.31

Abstract

Incomplete development and severe malformation of the heart result in miscarriage of embryos because of its malfunction as a pump for circulation. During cardiogenesis, development of the heart is precisely coordinated by the genetically-primed program that is revealed by the sequential expression of transcription factors. It is important to investigate how spatial allocation of the heart containing cardiomyocytes and other mesoderm-derived cells is determined. In addition, the molecular mechanism underlying cardiomyocyte differentiation still remains elusive. The location of ectoderm-, mesoderm-, and endoderm-derived organs is determined by their initial allocation and subsequent mutual cell-cell interactions or paracrine-based regulation. In the present work, we provide an overview of cardiac development controlled by the germ layers and discuss the points that should be uncovered in future for understanding cardiogenesis.

Keywords

References

  1. Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol 2000;14:839-54.
  2. Wilcox AJ, Weinberg CR, O'Connor JF, et al. Incidence of early loss of pregnancy. N Engl J Med 1988;319:189-94. https://doi.org/10.1056/NEJM198807283190401
  3. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39:1890-900. https://doi.org/10.1016/S0735-1097(02)01886-7
  4. Moller JH, Taubert KA, Allen HD, Clark EB, Lauer RM. Cardiovascular health and disease in children: current status. A Special Writing Group from the Task Force on Children and Youth, American Heart Association. Circulation 1994;89:923-30. https://doi.org/10.1161/01.CIR.89.2.923
  5. Tong YF. Mutations of NKX2.5 and GATA4 genes in the development of congenital heart disease. Gene 2016;588:86-94. https://doi.org/10.1016/j.gene.2016.04.061
  6. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012;100:253-77.
  7. Ramsdell AF. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 2005;288:1-20. https://doi.org/10.1016/j.ydbio.2005.07.038
  8. Patton EE, Zon LI. The art and design of genetic screens: zebrafish. Nat Rev Genet 2001;2:956-66. https://doi.org/10.1038/35103567
  9. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012;122:2337-43. https://doi.org/10.1172/JCI60434
  10. Auer TO, Del BF. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 2014;69:142-50. https://doi.org/10.1016/j.ymeth.2014.03.027
  11. Driever W, Fishman MC. The zebrafish: heritable disorders in transparent embryos. J Clin Invest 1996;97:1788-94. https://doi.org/10.1172/JCI118608
  12. Chen JN, Fishman MC. Genetics of heart development. Trends Genet 2000;16:383-8. https://doi.org/10.1016/S0168-9525(00)02075-8
  13. Yelon D. Cardiac patterning and morphogenesis in zebrafish. Dev Dyn 2001;222:552-63. https://doi.org/10.1002/dvdy.1243
  14. Rottbauer W, Wessels G, Dahme T, et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 2006;99:323-31. https://doi.org/10.1161/01.RES.0000234807.16034.fe
  15. Guner-Ataman B, Paffett-Lugassy N, Adams MS, et al. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 2013;140:1353-63. https://doi.org/10.1242/dev.088351
  16. Lazic S, Scott IC. Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Dev Biol 2011;354:123-33. https://doi.org/10.1016/j.ydbio.2011.03.028
  17. Schier AF, Talbot WS. Molecular genetics of axis formation in zebrafish. Annu Rev Genet 2005;39:561-613. https://doi.org/10.1146/annurev.genet.37.110801.143752
  18. D'Amico LA, Cooper MS. Spatially distinct domains of cell behavior in the zebrafish organizer region. Biochem Cell Biol 1997;75:563-77. https://doi.org/10.1139/o97-074
  19. Matsui T, Ishikawa H, Bessho Y. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish. Front Cell Dev Biol 2015;3:27.
  20. Okabe N, Xu B, Burdine RD. Fluid dynamics in zebrafish Kupffer's vesicle. Dev Dyn 2008;237:3602-12. https://doi.org/10.1002/dvdy.21730
  21. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 2005;132:1907-21. https://doi.org/10.1242/dev.01772
  22. Long S, Ahmad N, Rebagliati M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 2003;130:2303-16. https://doi.org/10.1242/dev.00436
  23. Keegan BR, Meyer D, Yelon D. Organization of cardiac chamber progenitors in the zebrafish blastula. Development 2004;131:3081-91. https://doi.org/10.1242/dev.01185
  24. Keegan BR, Feldman JL, Begemann G, Ingham PW, Yelon D. Retinoic acid signaling restricts the cardiac progenitor pool. Science 2005;307:247-9. https://doi.org/10.1126/science.1101573
  25. Ueno S, Weidinger G, Osugi T, et al. Biphasic role for Wnt/betacatenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 2007;104:9685-90. https://doi.org/10.1073/pnas.0702859104
  26. Marques SR, Lee Y, Poss KD, Yelon D. Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Dev Biol 2008;321:397-406. https://doi.org/10.1016/j.ydbio.2008.06.033
  27. Marques SR, Yelon D. Differential requirement for BMP signaling in atrial and ventricular lineages establishes cardiac chamber proportionality. Dev Biol 2009;328:472-82. https://doi.org/10.1016/j.ydbio.2009.02.010
  28. Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001;234:330-8. https://doi.org/10.1006/dbio.2001.0259
  29. Zeng XX, Wilm TP, Sepich DS, Solnica-Krezel L. Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 2007;12:391-402. https://doi.org/10.1016/j.devcel.2007.01.011
  30. Reiter JF, Alexander J, Rodaway A, et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 1999;13:2983-95. https://doi.org/10.1101/gad.13.22.2983
  31. Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW. The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 2001;128:3081-94.
  32. Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 2005;132:1247-60. https://doi.org/10.1242/dev.01663
  33. Kikuchi Y, Agathon A, Alexander J, et al. Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 2001;15:1493-505. https://doi.org/10.1101/gad.892301
  34. Amack JD, Yost HJ. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 2004;14:685-90. https://doi.org/10.1016/j.cub.2004.04.002
  35. Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi Y. Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 2008;135:2521-9. https://doi.org/10.1242/dev.020107
  36. Matsui T, Thitamadee S, Murata T, et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis. Proc Natl Acad Sci USA 2011;108:9881-6. https://doi.org/10.1073/pnas.1017248108
  37. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 2009;458:651-4. https://doi.org/10.1038/nature07753
  38. Tanaka Y, Okada Y, Hirokawa N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 2005;435:172-7. https://doi.org/10.1038/nature03494
  39. Pennekamp P, Karcher C, Fischer A, et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 2002;12:938-43. https://doi.org/10.1016/S0960-9822(02)00869-2
  40. Takao D, Nemoto T, Abe T, et al. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev Biol 2013;376:23-30. https://doi.org/10.1016/j.ydbio.2013.01.018
  41. Sarmah B, Latimer AJ, Appel B, Wente SR. Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 2005;9:133-45. https://doi.org/10.1016/j.devcel.2005.05.002
  42. Yuan S, Zhao L, Brueckner M, Sun Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr Biol 2015;25:556-67. https://doi.org/10.1016/j.cub.2014.12.051
  43. Roxo-Rosa M, Jacinto R, Sampaio P, Lopes SS. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR. Biol Open 2015;4:1356-66. https://doi.org/10.1242/bio.014076
  44. Lahvic JL, Ji Y, Marin P, et al. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 2013;384:166-80. https://doi.org/10.1016/j.ydbio.2013.10.009
  45. Delling M, Indzhykulian AA, Liu X, et al. Primary cilia are not calciumresponsive mechanosensors. Nature 2016;531:656-60. https://doi.org/10.1038/nature17426
  46. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 2013;188:913-22. https://doi.org/10.1164/rccm.201301-0059CI
  47. Rao DR, Gabriel GC, Li Y, et al. Role of cilia in structural birth defects: insights from ciliopathy mutant mouse models. Birth Defects Res C Embryo Today 2014;102:115-25. https://doi.org/10.1002/bdrc.21067
  48. Kennedy MP, Omran H, Leigh MW, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007;115:2814-21. https://doi.org/10.1161/CIRCULATIONAHA.106.649038
  49. McGrath J, Brueckner M. Cilia are at the heart of vertebrate left-right asymmetry. Curr Opin Genet Dev 2003;13:385-92. https://doi.org/10.1016/S0959-437X(03)00091-1
  50. Stainier DY, Lee RK, Fishman MC. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 1993;119:31-40.
  51. Dickmeis T, Mourrain P, Saint-Etienne L, et al. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 2001;15:1487-92. https://doi.org/10.1101/gad.196901
  52. Sakaguchi T, Kikuchi Y, Kuroiwa A, Takeda H, Stainier DY. The yolk syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in zebrafish. Development 2006;133:4063-72. https://doi.org/10.1242/dev.02581
  53. Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 2000;406:192-5. https://doi.org/10.1038/35018092
  54. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 2009;323:524-7. https://doi.org/10.1126/science.1167449
  55. Osborne N, Brand-Arzamendi K, Ober EA, et al. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol 2008;18:1882-8. https://doi.org/10.1016/j.cub.2008.10.061
  56. Liu J, Stainier DY. Zebrafish in the study of early cardiac development. Circ Res 2012;110:870-4. https://doi.org/10.1161/CIRCRESAHA.111.246504
  57. Zhou Y, Cashman TJ, Nevis KR, et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature 2011;474:645-8. https://doi.org/10.1038/nature10094
  58. Fukui H, Terai K, Nakajima H, Chiba A, Fukuhara S, Mochizuki N. S1PYap1 signaling regulates endoderm formation required for cardiac precursor cell migration in zebrafish. Dev Cell 2014;31:128-36. https://doi.org/10.1016/j.devcel.2014.08.014
  59. Mendelson K, Evans T, Hla T. Sphingosine 1-phosphate signalling. Development 2014;141:5-9. https://doi.org/10.1242/dev.094805
  60. Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta 2013;1831:213-22. https://doi.org/10.1016/j.bbalip.2012.09.004
  61. Clay H, Wilsbacher LD, Wilson SJ, et al. Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 2016;418:157-65. https://doi.org/10.1016/j.ydbio.2016.06.024