DOI QR코드

DOI QR Code

Renal Denervation for Chronic Heart Failure: Background and Pathophysiological Rationale

  • Bohm, Michael (Departments of Internal Medicine III, Cardiology, Angiology, and Intensive Care, Saarland University Hospital) ;
  • Ewen, Sebastian (Departments of Internal Medicine III, Cardiology, Angiology, and Intensive Care, Saarland University Hospital) ;
  • Mahfoud, Felix (Departments of Internal Medicine III, Cardiology, Angiology, and Intensive Care, Saarland University Hospital)
  • Received : 2016.06.13
  • Accepted : 2016.07.28
  • Published : 2017.01.31

Abstract

The activation of the sympathetic nervous system is associated with cardiovascular hospitalizations and death in heart failure. Renal denervation has been shown to effectively reduce sympathetic overdrive in certain patients with uncontrolled hypertension. Pilot trials investigating renal denervation as a potential treatment approach for heart failure were initiated. Heart failure comorbidities like obstructive sleep apnea, metabolic syndrome and arrhythmias could also be targets for renal denervation, because these occurrences are also mediated by the activation of the sympathetic nervous system. Therefore, renal denervation in heart failure is worthy of further investigation, although its effectiveness still has to be proven. Herein, we describe the pathophysiological rationale and the effect of renal denervation on surrogates of the heart failure syndrome.

Keywords

References

  1. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 2009;54:375-85. https://doi.org/10.1016/j.jacc.2009.03.061
  2. Holmer S, Rinne B, Eckardt KU, Le Hir M, Schricker K, Kaissling B, Riegger G, Kurtz A. Role of renal nerves for the expression of renin in adult rat kidney. Am J Physiol 1994;266:F738-45.
  3. Hofmann U, Frantz S.Basic How can we cure a heart "in flame"? A translational view on inflammation in heart failure. Bas Res Cardiol 2013;108:356. https://doi.org/10.1007/s00395-013-0356-y
  4. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7:589-600. https://doi.org/10.1038/nrm1983
  5. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819-23. https://doi.org/10.1056/NEJM198409273111303
  6. Rector TS, Olivari MT, Levine TB, Francis GS, Cohn JN. Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 1987;114:148-52. https://doi.org/10.1016/0002-8703(87)90318-8
  7. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990;82:1724-9. https://doi.org/10.1161/01.CIR.82.5.1724
  8. Esler M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 2010;108:227-37.
  9. DiBona GF, Sawin LL. Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am J Physiol 1991;260:R298-305.
  10. Campese VM. Neurogenic factors and hypertension in chronic renal failure. J Nephrol 1997;10:184-7.
  11. Bohm M, Linz D, Ukena C, Esler M, Mahfoud F. Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ Res 2014;115:400-9. https://doi.org/10.1161/CIRCRESAHA.115.302522
  12. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003;108:3097-101. https://doi.org/10.1161/01.CIR.0000103123.66264.FE
  13. Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens 2007;25:909-20. https://doi.org/10.1097/HJH.0b013e328048d004
  14. Sobotka PA, Krum H, Bohm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep 2012;14:285-92. https://doi.org/10.1007/s11886-012-0258-x
  15. Dunlap ME, Sobotka PA. Fluid re-distribution rather than accumulation causes most cases of decompensated heart failure. J Am Coll Cardiol 2013;62:165-6. https://doi.org/10.1016/j.jacc.2013.02.081
  16. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000;342:1378-84. https://doi.org/10.1056/NEJM200005113421901
  17. Logan AG, Perlikowski SM, Mente A, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 2001;19:2271-7. https://doi.org/10.1097/00004872-200112000-00022
  18. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;33:1787-847. https://doi.org/10.1093/eurheartj/ehs104
  19. Ljungqvist A, Wagermark J. The adrenergic innervation of intrarenal glomerular and extra-glomerular circulatory routes. Nephron 1970;7:218-29. https://doi.org/10.1159/000179824
  20. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev 1991;71:659-82. https://doi.org/10.1152/physrev.1991.71.3.659
  21. Katholi RE, Whitlow PL, Hageman GR, Woods WT. Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J Hypertens 1984;2:349-59. https://doi.org/10.1097/00004872-198402040-00005
  22. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A 1989;Suppl 1:75-89.
  23. Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation 2002;106:1974-9. https://doi.org/10.1161/01.CIR.0000034043.16664.96
  24. Swedberg K, Viquerat C, Rouleau JL, et al. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 1984;54:783-6. https://doi.org/10.1016/S0002-9149(84)80208-8
  25. Bohm M, Beuckelmann D, Brown L, et al. Reduction of betaadrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 1988;9:844-52. https://doi.org/10.1093/oxfordjournals.eurheartj.a062577
  26. Bohm M, Gierschik P, Jakobs KH, et al. Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 1990;82:1249-65. https://doi.org/10.1161/01.CIR.82.4.1249
  27. Goldstein DS, Brush JE Jr, Eisenhofer G, Stull R, Esler M. In vivo measurement of neuronal uptake of norepinephrine in the human heart. Circulation 1988;78:41-8. https://doi.org/10.1161/01.CIR.78.1.41
  28. Bohm M, La Rosee K, Schwinger RH, Erdmann E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 1995;25:146-53. https://doi.org/10.1016/0735-1097(94)00353-R
  29. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986;73:615-21. https://doi.org/10.1161/01.CIR.73.4.615
  30. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Longterm outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J 2005;26:906-13. https://doi.org/10.1093/eurheartj/ehi184
  31. Page IH. The effect on renal efficiency of lowering arterial blood pressure in cases of essential hypertension and nephritis. J Clin Invest 1934;13:909-15. https://doi.org/10.1172/JCI100635
  32. Page IH, Heuer GJ. The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest 1935;14:27-30. https://doi.org/10.1172/JCI100652
  33. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc 1953;152:1501-4. https://doi.org/10.1001/jama.1953.03690160001001
  34. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009;373:1275-81. https://doi.org/10.1016/S0140-6736(09)60566-3
  35. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 2011;57:911-7. https://doi.org/10.1161/HYPERTENSIONAHA.110.163014
  36. Hering D, Mahfoud F, Walton AS, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol 2012;23:1250-7. https://doi.org/10.1681/ASN.2011111062
  37. Symplicity HTN-2 Investigators, Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010;376:1903-9. https://doi.org/10.1016/S0140-6736(10)62039-9
  38. Esler MD, Krum H, Schlaich M, Schmieder RE, Bohm M, Sobotka PA; Symplicity HTN-2 Investigators. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation 2012;126:2976-82. https://doi.org/10.1161/CIRCULATIONAHA.112.130880
  39. Ukena C, Mahfoud F, Kindermann I, et al. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 2011;58:1176-82. https://doi.org/10.1016/j.jacc.2011.05.036
  40. Brandt MC, Reda S, Mahfoud F, Lenski M, Bohm M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol 2012;60:1956-65. https://doi.org/10.1016/j.jacc.2012.08.959
  41. Brandt MC, Mahfoud F, Reda S, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 2012;59:901-9. https://doi.org/10.1016/j.jacc.2011.11.034
  42. Davies JE, Manisty CH, Petraco R, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol 2013;162:189-92. https://doi.org/10.1016/j.ijcard.2012.09.019
  43. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 2011;4:669-75. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961789
  44. Linz D, Schotten U, Neuberger HR, Bohm M, Wirth K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 2011;8:1436-43. https://doi.org/10.1016/j.hrthm.2011.03.053
  45. Linz D, Mahfoud F, Schotten U, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 2012;60:172-8. https://doi.org/10.1161/HYPERTENSIONAHA.112.191965
  46. Ahmed H, Miller MA, Dukkipati SR, et al. Adjunctive renal sympathetic denervation to modify hypertension as upstream therapy in the treatment of atrial fibrillation (H-FIB) study: clinical background and study design. J Cardiovasc Electrophysiol 2013;24:503-9. https://doi.org/10.1111/jce.12095
  47. Schirmer SH, Sayed MM, Reil JC, et al. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol 2014;63:1916-23. https://doi.org/10.1016/j.jacc.2013.10.073
  48. Mahfoud F, Urban D, Teller D, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J 2014;35:2224-31. https://doi.org/10.1093/eurheartj/ehu093
  49. Schirmer SH, Sayed MM, Reil JC, et al. Atrial remodeling following catheter-based renal denervation occurs in blood pressure- and heart rate-independent manner. JACC Cardiovasc Interv 2015;8:972-80. https://doi.org/10.1016/j.jcin.2015.02.014
  50. Linz D, van Hunnik A, Hohl M, et al. Catheter-based renal denervation reduces atrial nerve sprouting and complexity of atrial fibrillation in goats. Circ Arrhythm Electrophysiol 2015;8:466-74. https://doi.org/10.1161/CIRCEP.114.002453
  51. Linz D, Wirth K, Ukena C, et al. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm 2013;10:1525-30. https://doi.org/10.1016/j.hrthm.2013.07.015
  52. Ukena C, Bauer A, Mahfoud F, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 2012;101:63-7. https://doi.org/10.1007/s00392-011-0365-5
  53. Ukena C, Mahfoud F, Ewen S, et al. Renal denervation for treatment of ventricular arrhythmias: data from an international multicenter registry. Clin Res Cardiol 2016;105:876-9.
  54. Schlaich MP, Bart B, Hering D, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol 2013;168:2214-20. https://doi.org/10.1016/j.ijcard.2013.01.218
  55. Mahfoud F, Cremers B, Janker J, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 2012;60:419-24. https://doi.org/10.1161/HYPERTENSIONAHA.112.193870
  56. Linz D, Hohl M, Nickel A, et al. Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension 2013;62:767-74. https://doi.org/10.1161/HYPERTENSIONAHA.113.01728
  57. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 2011;123:1940-6. https://doi.org/10.1161/CIRCULATIONAHA.110.991869
  58. Tzafriri AR, Mahfoud F, Keating JH, Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol 2014;64:1079-87. https://doi.org/10.1016/j.jacc.2014.07.937
  59. Mahfoud F, Bohm M, Azizi M, et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J 2015;36:2219-27. https://doi.org/10.1093/eurheartj/ehv192
  60. Kandzari DE, Kario K, Mahfoud F, et al. The SPYRAL HTN Global Clinical Trial Program: Rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 2016;171:82-91. https://doi.org/10.1016/j.ahj.2015.08.021
  61. Donazzan L, Mahfoud F, Ewen S, et al. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol 2016;105:364-71. https://doi.org/10.1007/s00392-015-0930-4

Cited by

  1. Prediction efficiency of serum cystatin C for clinical outcome in patients with cardiac resynchronization therapy vol.187, pp.4, 2017, https://doi.org/10.1007/s11845-018-1771-8
  2. Renal Denervation: Is It Ready for Prime Time? vol.21, pp.8, 2017, https://doi.org/10.1007/s11886-019-1164-2
  3. Renal denervation attenuates pressure overload‐induced cardiac remodelling in rats with biphasic regulation of autophagy vol.226, pp.4, 2019, https://doi.org/10.1111/apha.13272