DOI QR코드

DOI QR Code

Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques

  • Park, Hye Sun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Baek, Jung Hwan (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Park, Auh Whan (Department of Radiology, Vascular & Interventional Radiology Section, University of Virginia Health System) ;
  • Chung, Sae Rom (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Choi, Young Jun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Jeong Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center)
  • Received : 2016.12.15
  • Accepted : 2017.03.09
  • Published : 2017.08.01

Abstract

Radiofrequency ablation (RFA) is a well-known, effective, and safe method for treating benign thyroid nodules and recurrent thyroid cancers. Thyroid-dedicated devices and basic techniques for thyroid RFA were introduced by the Korean Society of Thyroid Radiology (KSThR) in 2012. Thyroid RFA has now been adopted worldwide, with subsequent advances in devices and techniques. To optimize the treatment efficacy and patient safety, understanding the basic and advanced RFA techniques and selecting the optimal treatment strategy are critical. The goal of this review is to therefore provide updates and analysis of current devices and advanced techniques for RFA treatment of benign thyroid nodules and recurrent thyroid cancers.

Keywords

References

  1. Spiezia S, Garberoglio R, Milone F, Ramundo V, Caiazzo C, Assanti AP, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 2009;19:219-225 https://doi.org/10.1089/thy.2008.0202
  2. Faggiano A, Ramundo V, Assanti AP, Fonderico F, Macchia PE, Misso C, et al. Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study. J Clin Endocrinol Metab 2012;97:4439-4445 https://doi.org/10.1210/jc.2012-2251
  3. Cesareo R, Pasqualini V, Simeoni C, Sacchi M, Saralli E, Campagna G, et al. Prospective study of effectiveness of ultrasound-guided radiofrequency ablation versus control group in patients affected by benign thyroid nodules. J Clin Endocrinol Metab 2015;100:460-466 https://doi.org/10.1210/jc.2014-2186
  4. Jeong WK, Baek JH, Rhim H, Kim YS, Kwak MS, Jeong HJ, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 2008;18:1244-1250 https://doi.org/10.1007/s00330-008-0880-6
  5. Ugurlu MU, Uprak K, Akpinar IN, Attaallah W, Yegen C, Gulluoglu BM. Radiofrequency ablation of benign symptomatic thyroid nodules: prospective safety and efficacy study. World J Surg 2015;39:961-968 https://doi.org/10.1007/s00268-014-2896-1
  6. Long B, Li L, Yao L, Chen S, Yi H, Ye X, et al. Combined use of radioiodine therapy and radiofrequency ablation in treating postsurgical thyroid remnant of differentiated thyroid carcinoma. J Cancer Res Ther 2015;11 Suppl:C244-C247 https://doi.org/10.4103/0973-1482.170530
  7. Lim HK, Baek JH, Lee JH, Kim WB, Kim TY, Shong YK, et al. Efficacy and safety of radiofrequency ablation for treating locoregional recurrence from papillary thyroid cancer. Eur Radiol 2015;25:163-170 https://doi.org/10.1007/s00330-014-3405-5
  8. Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 2001;130:971-977 https://doi.org/10.1067/msy.2001.118708
  9. Kim JH, Yoo WS, Park YJ, Park DJ, Yun TJ, Choi SH, et al. Efficacy and safety of radiofrequency ablation for treatment of locally recurrent thyroid cancers smaller than 2 cm. Radiology 2015;276:909-918 https://doi.org/10.1148/radiol.15140079
  10. Zhang M, Luo Y, Zhang Y, Tang J. Efficacy and safety of ultrasound-guided radiofrequency ablation for treating lowrisk papillary thyroid microcarcinoma: a prospective study. Thyroid 2016;26:1581-1587 https://doi.org/10.1089/thy.2015.0471
  11. Kim JH, Baek JH, Sung JY, Min HS, Kim KW, Hah JH, et al. Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery. Int J Hyperthermia 2017;33:212-219 https://doi.org/10.1080/02656736.2016.1230893
  12. Sun J, Liu X, Zhang Q, Hong Y, Song B, Teng X, et al. Papillary thyroid carcinoma treated with radiofrequency ablation in a patient with hypertrophic cardiomyopathy: a case report. Korean J Radiol 2016;17:558-561 https://doi.org/10.3348/kjr.2016.17.4.558
  13. Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, et al. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol 2012;13:117-125 https://doi.org/10.3348/kjr.2012.13.2.117
  14. Kohlhase KD, Korkusuz Y, Groner D, Erbelding C, Happel C, Luboldt W, et al. Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. Int J Hyperthermia 2016;32:511-516 https://doi.org/10.3109/02656736.2016.1149234
  15. Korkusuz Y, Erbelding C, Kohlhase K, Luboldt W, Happel C, Grunwald F. Bipolar radiofrequency ablation of benign symptomatic thyroid nodules: initial experience. Rofo 2016;188:671-675
  16. Na DG, Lee JH, Kim SM, Lim HK, Baek JH. Unidirectional ablation electrode to minimize thermal injury during radiofrequency ablation: an experimental study in an ex vivo bovine liver model. J Vasc Interv Radiol 2011;22:935-940 https://doi.org/10.1016/j.jvir.2011.02.010
  17. Turtulici G, Orlandi D, Corazza A, Sartoris R, Derchi LE, Silvestri E, et al. Percutaneous radiofrequency ablation of benign thyroid nodules assisted by a virtual needle tracking system. Ultrasound Med Biol 2014;40:1447-1452 https://doi.org/10.1016/j.ultrasmedbio.2014.02.017
  18. Laeseke PF, Sampson LA, Brace CL, Winter TC 3rd, Fine JP, Lee FT Jr. Unintended thermal injuries from radiofrequency ablation: protection with 5% dextrose in water. AJR Am J Roentgenol 2006;186(5 Suppl):S249-S254 https://doi.org/10.2214/AJR.04.1240
  19. Lim HK, Lee JH, Ha EJ, Sung JY, Kim JK, Baek JH. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients. Eur Radiol 2013;23:1044-1049 https://doi.org/10.1007/s00330-012-2671-3
  20. Ahn HS, Kim SJ, Park SH, Seo M. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography. Ultrasonography 2016;35:244-252 https://doi.org/10.14366/usg.15083
  21. Huh JY, Baek JH, Choi H, Kim JK, Lee JH. Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session--prospective randomized study. Radiology 2012;263:909-916 https://doi.org/10.1148/radiol.12111300
  22. Baek JH, Lee JH, Valcavi R, Pacella CM, Rhim H, Na DG. Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 2011;12:525-540 https://doi.org/10.3348/kjr.2011.12.5.525
  23. Ikeda K, Osaki Y, Nakanishi H, Nasu A, Kawamura Y, Jyoko K, et al. Recent progress in radiofrequency ablation therapy for hepatocellular carcinoma. Oncology 2014;87 Suppl 1:73-77 https://doi.org/10.1159/000368148
  24. Ha EJ, Baek JH, Lee JH. Ultrasonography-based thyroidal and perithyroidal anatomy and its clinical significance. Korean J Radiol 2015;16:749-766 https://doi.org/10.3348/kjr.2015.16.4.749
  25. Ha EJ, Baek JH, Lee JH. Moving-shot versus fixed electrode techniques for radiofrequency ablation: comparison in an exvivo bovine liver tissue model. Korean J Radiol 2014;15:836-843 https://doi.org/10.3348/kjr.2014.15.6.836
  26. Baek JH, Ha EJ, Choi YJ, Sung JY, Kim JK, Shong YK. Radiofrequency versus ethanol ablation for treating predominantly cystic thyroid nodules: a randomized clinical trial. Korean J Radiol 2015;16:1332-1340 https://doi.org/10.3348/kjr.2015.16.6.1332
  27. Ha EJ, Baek JH, Lee JH, Kim JK, Shong YK. Clinical significance of vagus nerve variation in radiofrequency ablation of thyroid nodules. Eur Radiol 2011;21:2151-2157 https://doi.org/10.1007/s00330-011-2167-6
  28. Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, et al. Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology 2013;269:293-300 https://doi.org/10.1148/radiol.13122134
  29. Gharib H, Hegedus L, Pacella CM, Baek JH, Papini E. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab 2013;98:3949-3957 https://doi.org/10.1210/jc.2013-1806
  30. Baek JH, Moon WJ, Kim YS, Lee JH, Lee D. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg 2009;33:1971-1977 https://doi.org/10.1007/s00268-009-0130-3
  31. Deandrea M, Sung JY, Limone P, Mormile A, Garino F, Ragazzoni F, et al. Efficacy and safety of radiofrequency ablation versus observation for nonfunctioning benign thyroid nodules: a randomized controlled international collaborative trial. Thyroid 2015;25:890-896 https://doi.org/10.1089/thy.2015.0133
  32. Lee YH, Baek JH, Jung SL, Kwak JY, Kim JH, Shin JH, et al. Ultrasound-guided fine needle aspiration of thyroid nodules: a consensus statement by the Korean Society of Thyroid Radiology. Korean J Radiol 2015;16:391-401 https://doi.org/10.3348/kjr.2015.16.2.391
  33. Lee SJ, Jung SL, Kim BS, Ahn KJ, Choi HS, Lim DJ, et al. Radiofrequency ablation to treat loco-regional recurrence of well-differentiated thyroid carcinoma. Korean J Radiol 2014;15:817-826 https://doi.org/10.3348/kjr.2014.15.6.817
  34. Saaiq M, Zaib S, Ahmad S. Electrocautery burns: experience with three cases and review of literature. Ann Burns Fire Disasters 2012;25:203-206
  35. Baek JH, Lee JH, Sung JY, Bae JI, Kim KT, Sim J, et al. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 2012;262:335-342 https://doi.org/10.1148/radiol.11110416
  36. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography 2014;33:227-239 https://doi.org/10.14366/usg.14021
  37. Makino Y, Imai Y, Igura T, Ohama H, Kogita S, Sawai Y, et al. Usefulness of the multimodality fusion imaging for the diagnosis and treatment of hepatocellular carcinoma. Dig Dis 2012;30:580-587 https://doi.org/10.1159/000343070
  38. Toshikuni N, Tsutsumi M, Takuma Y, Arisawa T. Real-time image fusion for successful percutaneous radiofrequency ablation of hepatocellular carcinoma. J Ultrasound Med 2014;33:2005-2010 https://doi.org/10.7863/ultra.33.11.2005
  39. Shin JH, Baek JH, Ha EJ, Lee JH. Radiofrequency ablation of thyroid nodules: basic principles and clinical application. Int J Endocrinol 2012;2012:919650
  40. Hong MJ, Baek JH, Choi YJ, Lee JH, Lim HK, Shong YK, et al. Radiofrequency ablation is a thyroid function-preserving treatment for patients with bilateral benign thyroid nodules. J Vasc Interv Radiol 2015;26:55-61 https://doi.org/10.1016/j.jvir.2014.09.015
  41. Sung JY, Baek JH, Jung SL, Kim JH, Kim KS, Lee D, et al. Radiofrequency ablation for autonomously functioning thyroid nodules: a multicenter study. Thyroid 2015;25:112-117 https://doi.org/10.1089/thy.2014.0100
  42. Bernardi S, Lanzilotti V, Papa G, Panizzo N, Dobrinja C, Fabris B, et al. Full-thickness skin burn caused by radiofrequency ablation of a benign thyroid nodule. Thyroid 2016;26:183-184 https://doi.org/10.1089/thy.2015.0453
  43. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  44. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2016;17:370-395 https://doi.org/10.3348/kjr.2016.17.3.370
  45. Russ G. Risk stratification of thyroid nodules on ultrasonography with the French TI-RADS: description and reflections. Ultrasonography 2016;35:25-38 https://doi.org/10.14366/usg.15027
  46. Pillai K, Akhter J, Chua TC, Shehata M, Alzahrani N, Al-Alem I, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine (Baltimore) 2015;94:e580 https://doi.org/10.1097/MD.0000000000000580
  47. Zhu AX, Salem R. Combining transarterial chemoembolization with radiofrequency ablation for hepatocellular carcinoma: one step forward? J Clin Oncol 2013;31:406-408
  48. Chok KS, Ng KC, Lam CM, Ng KK, Poon RT, Fan ST. Selective portal vein clamping for radiofrequency ablation of hepatocellular carcinoma with portal vein invasion. J Gastrointest Surg 2005;9:489-493 https://doi.org/10.1016/j.gassur.2004.09.056
  49. Yoon HM, Baek JH, Lee JH, Ha EJ, Kim JK, Yoon JH, et al. Combination therapy consisting of ethanol and radiofrequency ablation for predominantly cystic thyroid nodules. AJNR Am J Neuroradiol 2014;35:582-586 https://doi.org/10.3174/ajnr.A3701
  50. Deandrea M, Limone P, Basso E, Mormile A, Ragazzoni F, Gamarra E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol 2008;34:784-791 https://doi.org/10.1016/j.ultrasmedbio.2007.10.018
  51. Park HS, Baek JH, Choi YJ, Lee JH. Innovative techniques for image-guided ablation of benign thyroid nodules: combined ethanol and radiofrequency ablation. Korean J Radiol 2017;18:461-469 https://doi.org/10.3348/kjr.2017.18.3.461
  52. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 2010;20:1253-1261 https://doi.org/10.1089/thy.2010.0189
  53. Dossing H, Bennedbæk FN, Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol 2011;165:123-128 https://doi.org/10.1530/EJE-11-0220
  54. Zhao CK, Xu HX, Lu F, Sun LP, He YP, Guo LH, et al. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: first results of CEUS evaluation. Clin Hemorheol Microcirc 2016 Dec 14 [Epub]. http://dx.doi.org/10.3233/CH-16208
  55. Wang B, Han ZY, Yu J, Cheng Z, Liu F, Yu XL, et al. Factors related to recurrence of the benign non-functioning thyroid nodules after percutaneous microwave ablation. Int J Hyperthermia 2017 Jan 12 [Epub]. http://dx.doi.org/10.1080/02656736.2016.1274058
  56. Levit E, Bruners P, Gunther RW, Mahnken AH. Bile aspiration and hydrodissection to prevent complications in hepatic RFA close to the gallbladder. Acta Radiol 2012;53:1045-1048 https://doi.org/10.1258/ar.2012.120190
  57. Chen MH, Yang W, Yan K, Hou YB, Dai Y, Gao W, et al. Radiofrequency ablation of problematically located hepatocellular carcinoma: tailored approach. Abdom Imaging 2008;33:428-436 https://doi.org/10.1007/s00261-007-9283-4

Cited by

  1. Ultrasound-Guided Percutaneous Microwave Ablation for Solid Benign Thyroid Nodules: Comparison of MWA versus Control Group vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/9724090
  2. Radiofrequency ablation of primary thyroid carcinoma: efficacy according to the types of thyroid carcinoma vol.34, pp.5, 2017, https://doi.org/10.1080/02656736.2018.1427288
  3. Ex vivo comparison between thyroid-dedicated bipolar and monopolar radiofrequency electrodes vol.34, pp.5, 2017, https://doi.org/10.1080/02656736.2018.1437283
  4. Ultrasound-guided percutaneous microwave ablation versus surgery for papillary thyroid microcarcinoma vol.34, pp.5, 2017, https://doi.org/10.1080/02656736.2018.1453092
  5. Comparison between microwave ablation and bipolar radiofrequency ablation in benign thyroid nodules: differences in energy transmission, duration of application and applied shots vol.35, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1489984
  6. Initial Ablation Ratio: Quantitative Value Predicting the Therapeutic Success of Thyroid Radiofrequency Ablation vol.28, pp.11, 2017, https://doi.org/10.1089/thy.2018.0180
  7. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.632
  8. RE: 2017 Thyroid Radiofrequency Ablation Guideline: The Korean Society of Thyroid Radiology vol.19, pp.6, 2017, https://doi.org/10.3348/kjr.2018.19.6.1196
  9. Risk Assessment and Hydrodissection Technique for Radiofrequency Ablation of Thyroid Benign Nodules vol.9, pp.17, 2017, https://doi.org/10.7150/jca.26060
  10. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules without anesthesia or sedation vol.61, pp.2, 2017, https://doi.org/10.1007/s12020-018-1560-1
  11. Image‐guided chemical and thermal ablations for thyroid disease: Review of efficacy and complications vol.40, pp.9, 2018, https://doi.org/10.1002/hed.25181
  12. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population vol.20, pp.12, 2017, https://doi.org/10.3348/kjr.2019.0192
  13. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  14. Management strategy for nerve damage during radiofrequency ablation of thyroid nodules vol.36, pp.1, 2017, https://doi.org/10.1080/02656736.2018.1554826
  15. Laser and radiofrequency ablations for benign and malignant thyroid tumors vol.36, pp.2, 2017, https://doi.org/10.1080/02656736.2019.1622795
  16. Summary of the 2017 thyroid radiofrequency ablation guideline and comparison with the 2012 guideline vol.38, pp.2, 2017, https://doi.org/10.14366/usg.18044
  17. Long-Term Outcomes Following Thermal Ablation of Benign Thyroid Nodules as an Alternative to Surgery: The Importance of Controlling Regrowth vol.34, pp.2, 2019, https://doi.org/10.3803/enm.2019.34.2.117
  18. Effect of perithyroidal lignocaine infusion (PLI) to pain experienced during high-intensity focused ultrasound (HIFU) ablation of benign thyroid nodules vol.29, pp.10, 2019, https://doi.org/10.1007/s00330-019-06160-5
  19. Minimally Invasive Radiofrequency Ablation for Large Thyroid Toxic Adenoma vol.46, pp.3, 2017, https://doi.org/10.2478/amb-2019-0031
  20. Revisiting Rupture of Benign Thyroid Nodules after Radiofrequency Ablation: Various Types and Imaging Features vol.34, pp.4, 2017, https://doi.org/10.3803/enm.2019.34.4.415
  21. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules vol.9, pp.4, 2020, https://doi.org/10.1159/000508484
  22. Twelve-Month Volume Reduction Ratio Predicts Regrowth and Time to Regrowth in Thyroid Nodules Submitted to Laser Ablation: A 5-Year Follow-Up Retrospective Study vol.21, pp.6, 2020, https://doi.org/10.3348/kjr.2019.0798
  23. Minimally Invasive Treatment for Benign Parathyroid Lesions: Treatment Efficacy and Safety Based on Nodule Characteristics vol.21, pp.None, 2017, https://doi.org/10.3348/kjr.2020.0037
  24. Letter: Twelve-Month Volume Reduction Ratio Predicts Regrowth and Time to Regrowth in Thyroid Nodules Submitted to Laser Ablation: A 5-Year Follow-Up Retrospective Study vol.21, pp.None, 2017, https://doi.org/10.3348/kjr.2020.0647
  25. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  26. Thermal Ablation of Benign Thyroid Nodules and Papillary Thyroid Microcarcinoma vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.580431
  27. Efficacy and safety of ultrasonography-guided radiofrequency ablation for the treatment of T1bN0M0 papillary thyroid carcinoma: a retrospective study vol.37, pp.1, 2017, https://doi.org/10.1080/02656736.2020.1752945
  28. Residual vital ratio: predicting regrowth after radiofrequency ablation for benign thyroid nodules vol.37, pp.1, 2017, https://doi.org/10.1080/02656736.2020.1825835
  29. Quality of Life in Papillary Thyroid Microcarcinoma Patients Undergoing Radiofrequency Ablation or Surgery: A Comparative Study vol.11, pp.None, 2017, https://doi.org/10.3389/fendo.2020.00249
  30. Iatrogenic thyroid pseudoaneurysm following thyroid nodule radiofrequency ablation vol.13, pp.5, 2020, https://doi.org/10.1136/bcr-2020-234784
  31. Efficacy and Safety of Thermal Ablation Techniques for the Treatment of Primary Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis vol.30, pp.5, 2017, https://doi.org/10.1089/thy.2019.0707
  32. Effectiveness of Injecting Cold 5% Dextrose into Patients with Nerve Damage Symptoms during Thyroid Radiofrequency Ablation vol.35, pp.2, 2020, https://doi.org/10.3803/enm.2020.35.2.407
  33. Thermal ablation for benign, non-functioning thyroid nodules: A clinical review focused on outcomes, technical remarks, and comparisons with surgery vol.39, pp.4, 2020, https://doi.org/10.1080/15368378.2020.1809448
  34. Clinical applications of Doppler ultrasonography for thyroid disease: consensus statement by the Korean Society of Thyroid Radiology vol.39, pp.4, 2017, https://doi.org/10.14366/usg.20072
  35. Effects of Microwave Ablation on Papillary Thyroid Microcarcinoma: A Five-Year Follow-Up Report vol.30, pp.12, 2017, https://doi.org/10.1089/thy.2020.0049
  36. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors vol.30, pp.12, 2017, https://doi.org/10.1089/thy.2020.0106
  37. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 Clinical Practice Guideline for the Use of Minimally Invasive Treatments in Malignant Thyroid Les vol.10, pp.3, 2017, https://doi.org/10.1159/000516469
  38. Continuous, Large-Volume Hydrodissection to Protect Delicate Structures around the Thyroid throughout the Radiofrequency Ablation Procedure vol.10, pp.6, 2017, https://doi.org/10.1159/000519625
  39. Radiofrequency ablation versus reoperation for benign thyroid nodules that developed after previous thyroid surgery vol.38, pp.1, 2017, https://doi.org/10.1080/02656736.2021.1873429
  40. Is partial ablation appropriate for benign thyroid nodules? A retrospective study with long-term follow-up after microwave ablation vol.38, pp.1, 2017, https://doi.org/10.1080/02656736.2021.1936217
  41. Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: a multicenter retrospective study vol.38, pp.1, 2017, https://doi.org/10.1080/02656736.2021.1936218
  42. Long-Term Outcomes of Thermal Ablation for Benign Thyroid Nodules: The Issue of Regrowth vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9922509
  43. The Ablation of Thyroid Nodule’s Afferent Arteries Before Radiofrequency Ablation: Preliminary Data vol.11, pp.None, 2017, https://doi.org/10.3389/fendo.2020.565000
  44. Efficacy and Safety of Thermal Ablation for Solitary T1bN0M0 Papillary Thyroid Carcinoma: A Multicenter Study vol.106, pp.2, 2021, https://doi.org/10.1210/clinem/dgaa776
  45. Radiofrequency Ablation a Safe and Effective Treatment for Pediatric Benign Nodular Thyroid Goiter vol.9, pp.None, 2017, https://doi.org/10.3389/fped.2021.753343
  46. Radiofrequency Thermal Ablation for a Small Papillary Thyroid Carcinoma in a Patient Unfit for Surgery: A Case Report vol.12, pp.None, 2017, https://doi.org/10.3389/fendo.2021.566362
  47. Ultrasound-Guided Thermal Ablation of Bethesda IV Thyroid Nodules: A Pilot Study vol.12, pp.None, 2017, https://doi.org/10.3389/fendo.2021.674970
  48. RFA and benign thyroid nodules: Review of the current literature vol.6, pp.1, 2021, https://doi.org/10.1002/lio2.517
  49. Ultrasound-Guided Thermal Ablation of Thyroid Nodules: Technicalities Progress and Clinical Applications, Especially in Malignant Thyroid Nodules vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.761005
  50. Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: a systematic review vol.40, pp.2, 2021, https://doi.org/10.14366/usg.20015
  51. Laser Ablation Versus Radiofrequency Ablation for Thyroid Nodules: 12-Month Results of a Randomized Trial (LARA II Study) vol.106, pp.6, 2017, https://doi.org/10.1210/clinem/dgab102
  52. Safety and Efficacy of Radiofrequency Ablation of Thyroid Nodules-Expanding Treatment Options in the United States vol.5, pp.8, 2017, https://doi.org/10.1210/jendso/bvab110
  53. Lidocaine‐induced systemic toxicity complicating radiofrequency ablation of benign thyroid nodule procedure: A case report and review of literature vol.9, pp.10, 2017, https://doi.org/10.1002/ccr3.4910
  54. The Role of CEUS in the Evaluation of Thyroid Cancer: From Diagnosis to Local Staging vol.10, pp.19, 2017, https://doi.org/10.3390/jcm10194559
  55. Ultrasound-Guided Radiofrequency Ablation for the Treatment of Primary Hyperparathyroidism: An Efficacy and Safety Study vol.27, pp.12, 2017, https://doi.org/10.1016/j.eprac.2021.07.012
  56. Efficacy on radiofrequency ablation according to the types of benign thyroid nodules vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-01593-9
  57. Computer-Analyzed Ultrasound Predictors of the Treatment Efficacy of Radiofrequency Ablation for Benign Thyroid Nodules vol.46, pp.1, 2022, https://doi.org/10.1007/s00268-021-06340-9
  58. Radiofrequency ablation and thyroid cancer: review of the current literature vol.43, pp.1, 2017, https://doi.org/10.1016/j.amjoto.2021.103204
  59. Analyzing the adoption of radiofrequency ablation of thyroid nodules using the diffusion of innovations theory: understanding where we are in the United States? vol.41, pp.1, 2017, https://doi.org/10.14366/usg.21117