Acknowledgement
Supported by : National Research Foundation (NRF) of Korea
References
- Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 2004;351:427-437 https://doi.org/10.1056/NEJMoa031759
- Kuhl CK, Schrading S, Leutner CC, Morakkabati-Spitz N, Wardelmann E, Fimmers R, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 2005;23:8469-8476 https://doi.org/10.1200/JCO.2004.00.4960
- Leach MO, Boggis CR, Dixon AK, Easton DF, Eeles RA, Evans DG, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 2005;365:1769-1778 https://doi.org/10.1016/S0140-6736(05)66481-1
- Ko ES, Han H, Han BK, Kim SM, Kim RB, Lee GW, et al. Prognostic significance of a complete response on breast MRI in patients who received neoadjuvant chemotherapy according to the molecular subtype. Korean J Radiol 2015;16:986-995 https://doi.org/10.3348/kjr.2015.16.5.986
- Obdeijn IM, Loo CE, Rijnsburger AJ, Wasser MN, Bergers E, Kok T, et al. Assessment of false-negative cases of breast MR imaging in women with a familial or genetic predisposition. Breast Cancer Res Treat 2010;119:399-407 https://doi.org/10.1007/s10549-009-0607-7
- Pages EB, Millet I, Hoa D, Doyon FC, Taourel P. Undiagnosed breast cancer at MR imaging: analysis of causes. Radiology 2012;264:40-50 https://doi.org/10.1148/radiol.12111917
- Yoon JH, Kim MJ, Kim EK, Moon HJ. Imaging surveillance of patients with breast cancer after primary treatment: current recommendations. Korean J Radiol 2015;16:219-228 https://doi.org/10.3348/kjr.2015.16.2.219
- Huang W, Fisher PR, Dulaimy K, Tudorica LA, O'Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 2004;232:585-591 https://doi.org/10.1148/radiol.2322030547
- Gruber S, Debski BK, Pinker K, Chmelik M, Grabner G, Helbich T, et al. Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology 2011;261:752-761 https://doi.org/10.1148/radiol.11102096
- Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Soeda H, Setoguchi T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 2008;28:1157-1165 https://doi.org/10.1002/jmri.21570
- Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol 2011;196:210-217 https://doi.org/10.2214/AJR.10.4258
- Seo M, Cho N, Bae MS, Koo HR, Kim WH, Lee SH, et al. Features of undiagnosed breast cancers at screening breast MR imaging and potential utility of computer-aided evaluation. Korean J Radiol 2016;17:59-68 https://doi.org/10.3348/kjr.2016.17.1.59
- Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009;29:1433-1449 https://doi.org/10.1148/rg.295095034
- Gonzalez Hernando C, Esteban L, Canas T, Van den Brule E, Pastrana M. The role of magnetic resonance imaging in oncology. Clin Transl Oncol 2010;12:606-613 https://doi.org/10.1007/s12094-010-0565-x
- Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours. Eur Radiol 2007;17:861-872 https://doi.org/10.1007/s00330-006-0431-y
- Busk M, Horsman MR. Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Imaging 2013;57:219-234
- McPhail LD, Robinson SP. Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 2010;254:110-118 https://doi.org/10.1148/radiol.2541090395
- Li SP, Taylor NJ, Makris A, Ah-See ML, Beresford MJ, Stirling JJ, et al. Primary human breast adenocarcinoma: imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy. Radiology 2010;257:643-652 https://doi.org/10.1148/radiol.10100421
-
Liu M, Guo X, Wang S, Jin M, Wang Y, Li J, et al. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-
$1{\alpha}$ . Eur Radiol 2013;23:3221-3227 https://doi.org/10.1007/s00330-013-2937-4 - Padhani A. Science to practice: what does MR oxygenation imaging tell us about human breast cancer hypoxia? Radiology 2010;254:1-3 https://doi.org/10.1148/radiol.091669
- Ryu JK, Oh JH, Kim HG, Rhee SJ, Seo M, Jahng GH. Estimation of T2* relaxation times for the glandular tissue and fat of breast at 3T MRI system. JKSMRM 2014;18:1-6
- Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology 2009;250:638-647 https://doi.org/10.1148/radiol.2503081054
- Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991;19:403-410 https://doi.org/10.1111/j.1365-2559.1991.tb00229.x
- Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 2010;6:195-197 https://doi.org/10.1200/JOP.777003
- Dolan M, Snover D. Comparison of immunohistochemical and fluorescence in situ hybridization assessment of HER-2 status in routine practice. Am J Clin Pathol 2005;123:766-770 https://doi.org/10.1309/Q0DGL26RUCK1K5EV
- Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009;101:736-750 https://doi.org/10.1093/jnci/djp082
- Hoskin PJ, Carnell DM, Taylor NJ, Smith RE, Stirling JJ, Daley FM, et al. Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. Int J Radiat Oncol Biol Phys 2007;68:1065-1071 https://doi.org/10.1016/j.ijrobp.2007.01.018
- Hohenberger P, Felgner C, Haensch W, Schlag PM. Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res Treat 1998;48:97-106 https://doi.org/10.1023/A:1005921513083
- Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266-276 https://doi.org/10.1093/jnci/93.4.266
- Ko ES, Han BK, Kim RB, Cho EY, Ahn S, Nam SJ, et al. Apparent diffusion coefficient in estrogen receptor-positive invasive ductal breast carcinoma: correlations with tumor-stroma ratio. Radiology 2014;271:30-37 https://doi.org/10.1148/radiol.13131073
- Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 2002;41(3A):154-161 https://doi.org/10.1046/j.1365-2559.2002.14892.x
- Lee SH, Cho N, Kim SJ, Cha JH, Cho KS, Ko ES, et al. Correlation between high resolution dynamic MR features and prognostic factors in breast cancer. Korean J Radiol 2008;9:10-18 https://doi.org/10.3348/kjr.2008.9.1.10
- Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO classification of Tumours of the breast, 4th ed. Lyon: International Agency for Research on Cancer, 2012:14-31
- Padhani AR, Ah-See ML, Taylor NJ. An investigation of histological and DC-MRI correlates of intrinsic susceptibility contrast relaxivity (R2*) in human breast cancer. Berkeley, CA: Proceedings of the Thirteenth Meeting of the International Society for Magnetic Resonance in Medicine, 2005:1846
- Hendrick RE. Image contrast and noise. In: Stark DD, Bradley WG, eds. Magnetic resonance imaging, 3rd ed. St Louis, MO: Mosby, 1999:43-68
- Kawashima M, Tamaki Y, Nonaka T, Higuchi K, Kimura M, Koida T, et al. MR imaging of mucinous carcinoma of the breast. AJR Am J Roentgenol 2002;179:179-183 https://doi.org/10.2214/ajr.179.1.1790179
- Velasco M, Santamaria G, Ganau S, Farrus B, Zanon G, Romagosa C, et al. MRI of metaplastic carcinoma of the breast. AJR Am J Roentgenol 2005;184:1274-1278 https://doi.org/10.2214/ajr.184.4.01841274
- Yuen S, Uematsu T, Kasami M, Tanaka K, Kimura K, Sanuki J, et al. Breast carcinomas with strong high-signal intensity on T2-weighted MR images: pathological characteristics and differential diagnosis. J Magn Reson Imaging 2007;25:502-510 https://doi.org/10.1002/jmri.20845
Cited by
- Identification of Preoperative Magnetic Resonance Imaging Features Associated with Positive Resection Margins in Breast Cancer: A Retrospective Study vol.19, pp.5, 2017, https://doi.org/10.3348/kjr.2018.19.5.897
- Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1172
- A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
- Kinetic Features of Invasive Breast Cancers on Computer-Aided Diagnosis Using 3T MRI Data: Correlation with Clinical and Pathologic Prognostic Factors vol.20, pp.3, 2019, https://doi.org/10.3348/kjr.2018.0587
- How clinical imaging can assess cancer biology vol.10, pp.None, 2019, https://doi.org/10.1186/s13244-019-0703-0
- Analysis of different phase unwrapping methods to optimize quantitative susceptibility mapping in the abdomen vol.82, pp.6, 2017, https://doi.org/10.1002/mrm.27891
- Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
- Spiral blurring correction with water–fat separation for magnetic resonance fingerprinting in the breast vol.83, pp.4, 2017, https://doi.org/10.1002/mrm.27994
- Utility of synthetic MRI in predicting the Ki-67 status of oestrogen receptor-positive breast cancer: a feasibility study vol.75, pp.5, 2020, https://doi.org/10.1016/j.crad.2019.12.021
- The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI vol.20, pp.1, 2017, https://doi.org/10.1186/s40644-020-00365-4
- Multiparameter MRI Model With DCE-MRI, DWI, and Synthetic MRI Improves the Diagnostic Performance of BI-RADS 4 Lesions vol.11, pp.None, 2017, https://doi.org/10.3389/fonc.2021.699127
- Confounding factors in breast magnetic resonance fingerprinting: B1+, slice profile, and diffusion effects vol.85, pp.4, 2017, https://doi.org/10.1002/mrm.28545