DOI QR코드

DOI QR Code

Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits

  • Goo, Hyun Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ra, Young-Shin (Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2016.03.12
  • Accepted : 2016.08.17
  • Published : 2017.01.01

Abstract

Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

Keywords

References

  1. Barkovich AJ. Pediatric Neuroimaging, 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2005
  2. Panigrahy A, Bluml S. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 2009;24:1343-1365 https://doi.org/10.1177/0883073809342129
  3. Radbruch A, Bendszus M. Advanced MR imaging in neurooncology. Clin Neuroradiol 2015;25 Suppl 2:143-149
  4. Rossi A, Gandolfo C, Morana G, Severino M, Garre ML, Cama A. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol 2010;40:999-1009 https://doi.org/10.1007/s00247-010-1613-y
  5. Poretti A, Meoded A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 2012;35:32-47 https://doi.org/10.1002/jmri.22722
  6. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 2009;19:527-557 https://doi.org/10.1016/j.nic.2009.08.007
  7. Romano A, Rossi Espagnet MC, Calabria LF, Coppola V, Figa Talamanca L, Cipriani V, et al. Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours. Radiol Med 2012;117:445-460 https://doi.org/10.1007/s11547-011-0715-4
  8. Plaza MJ, Borja MJ, Altman N, Saigal G. Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol 2013;200:1115-1124 https://doi.org/10.2214/AJR.12.9725
  9. Borja MJ, Plaza MJ, Altman N, Saigal G. Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 2013;200:W483-W503 https://doi.org/10.2214/AJR.12.9724
  10. Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 2013;229:155-172 https://doi.org/10.1016/j.jmr.2012.11.024
  11. Goo HW. High field strength magnetic resonance imaging in children. J Korean Med Assoc 2010;53:1093-1102 https://doi.org/10.5124/jkma.2010.53.12.1093
  12. Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol 2002;57:219-225 https://doi.org/10.1053/crad.2001.0741
  13. Porto L, Jurcoane A, Schwabe D, Kieslich M, Hattingen E. Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. Eur J Paediatr Neurol 2013;17:302-307 https://doi.org/10.1016/j.ejpn.2012.12.002
  14. Gimi B, Cederberg K, Derinkuyu B, Gargan L, Koral KM, Bowers DC, et al. Utility of apparent diffusion coefficient ratios in distinguishing common pediatric cerebellar tumors. Acad Radiol 2012;19:794-800 https://doi.org/10.1016/j.acra.2012.03.004
  15. Bull JG, Saunders DE, Clark CA. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms. Eur Radiol 2012;22:447-457 https://doi.org/10.1007/s00330-011-2255-7
  16. Bai Y, Lin Y, Tian J, Shi D, Cheng J, Haacke EM, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology 2016;278:496-504 https://doi.org/10.1148/radiol.2015142173
  17. Sui Y, Wang H, Liu G, Damen FW, Wanamaker C, Li Y, et al. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model. Radiology 2015;277:489-496 https://doi.org/10.1148/radiol.2015142156
  18. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 2004;25:356-369
  19. Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 2004;232:221-228 https://doi.org/10.1148/radiol.2321030653
  20. Leclercq D, Delmaire C, de Champfleur NM, Chiras J, Lehericy S. Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 2011;22:253-268, ix https://doi.org/10.1016/j.nec.2010.11.004
  21. Lee SK. Diffusion tensor and perfusion imaging of brain tumors in high-field MR imaging. Neuroimaging Clin N Am 2012;22:123-134, ix https://doi.org/10.1016/j.nic.2012.02.001
  22. Khong PL, Kwong DL, Chan GC, Sham JS, Chan FL, Ooi GC. Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: a pilot study. AJNR Am J Neuroradiol 2003;24:734-740
  23. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 1999;91:238-250 https://doi.org/10.3171/jns.1999.91.2.0238
  24. O'Shaughnessy ES, Berl MM, Moore EN, Gaillard WD. Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 2008;23:791-801 https://doi.org/10.1177/0883073807313047
  25. Ogg RJ, Laningham FH, Clarke D, Einhaus S, Zou P, Tobias ME, et al. Passive range of motion functional magnetic resonance imaging localizing sensorimotor cortex in sedated children. J Neurosurg Pediatr 2009;4:317-322 https://doi.org/10.3171/2009.4.PEDS08402
  26. Kokkonen SM, Nikkinen J, Remes J, Kantola J, Starck T, Haapea M, et al. Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn Reson Imaging 2009;27:733-740 https://doi.org/10.1016/j.mri.2008.11.002
  27. Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 2014;15:554-577 https://doi.org/10.3348/kjr.2014.15.5.554
  28. Thompson EM, Guillaume DJ, Dosa E, Li X, Nazemi KJ, Gahramanov S, et al. Dual contrast perfusion MRI in a single imaging session for assessment of pediatric brain tumors. J Neurooncol 2012;109:105-114 https://doi.org/10.1007/s11060-012-0872-x
  29. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834-841 https://doi.org/10.1148/radiol.13131669
  30. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 2016;58:433-441 https://doi.org/10.1007/s00234-016-1658-1
  31. Ho CY, Cardinal JS, Kamer AP, Kralik SF. Relative cerebral blood volume from dynamic susceptibility contrast perfusion in the grading of pediatric primary brain tumors. Neuroradiology 2015;57:299-306 https://doi.org/10.1007/s00234-014-1478-0
  32. Cho SK, Na DG, Ryoo JW, Roh HG, Moon CH, Byun HS, et al. Perfusion MR imaging: clinical utility for the differential diagnosis of various brain tumors. Korean J Radiol 2002;3:171-179 https://doi.org/10.3348/kjr.2002.3.3.171
  33. Ho CY, Cardinal JS, Kamer AP, Lin C, Kralik SF. Contrast leakage patterns from dynamic susceptibility contrast perfusion MRI in the grading of primary pediatric brain tumors. AJNR Am J Neuroradiol 2016;37:544-551 https://doi.org/10.3174/ajnr.A4559
  34. Goo HW, Ra YS. Medullary hemangioblastoma in a child with von Hippel-Lindau disease: vascular tumor perfusion depicted by arterial spin labeling and dynamic contrast-enhanced imaging. J Neurosurg Pediatr 2015;16:50-53 https://doi.org/10.3171/2014.12.PEDS14609
  35. Hales PW, Phipps KP, Kaur R, Clark CA. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling. PLoS One 2013;8:e75717 https://doi.org/10.1371/journal.pone.0075717
  36. White CM, Pope WB, Zaw T, Qiao J, Naeini KM, Lai A, et al. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. J Neuroimaging 2014;24:23-30 https://doi.org/10.1111/j.1552-6569.2012.00703.x
  37. Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, et al. Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 2014;35:395-401 https://doi.org/10.3174/ajnr.A3670
  38. Brandao LA, Poussaint TY. Pediatric brain tumors. Neuroimaging Clin N Am 2013;23:499-525 https://doi.org/10.1016/j.nic.2013.03.003
  39. Wang Z, Sutton LN, Cnaan A, Haselgrove JC, Rorke LB, Zhao H, et al. Proton MR spectroscopy of pediatric cerebellar tumors. AJNR Am J Neuroradiol 1995;16:1821-1833
  40. Shiroishi MS, Panigrahy A, Moore KR, Nelson MD Jr, Gilles FH, Gonzalez-Gomez I, et al. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone. Neuroradiology 2015;57:951-956 https://doi.org/10.1007/s00234-015-1553-1
  41. Lobel U, Sedlacik J, Sabin ND, Kocak M, Broniscer A, Hillenbrand CM, et al. Three-dimensional susceptibilityweighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 2010;52:1167-1177 https://doi.org/10.1007/s00234-010-0771-9
  42. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008;29:9-17 https://doi.org/10.3174/ajnr.A0786
  43. Di Ieva A, Lam T, Alcaide-Leon P, Bharatha A, Montanera W, Cusimano MD. Magnetic resonance susceptibility weighted imaging in neurosurgery: current applications and future perspectives. J Neurosurg 2015;123:1463-1475 https://doi.org/10.3171/2015.1.JNS142349
  44. Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 2014;16:441-448 https://doi.org/10.1093/neuonc/not158
  45. Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, et al. In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 2014;111:4542-4547 https://doi.org/10.1073/pnas.1323855111

Cited by

  1. Quantitative Imaging in Pediatric Hepatobiliary Disease vol.20, pp.9, 2017, https://doi.org/10.3348/kjr.2019.0002
  2. Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study vol.25, pp.None, 2017, https://doi.org/10.1016/j.nicl.2020.102172
  3. Evaluation of Severity of Infectious Pneumonia for Newborn Using Ultrasound Image under Adaptive Image Denoising Algorithm vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6191448
  4. Three-Dimensional Pseudo-Continuous Arterial Spin Labeling Parameters Distinguish Pediatric Medulloblastoma and Pilocytic Astrocytoma vol.8, pp.None, 2017, https://doi.org/10.3389/fped.2020.598190
  5. Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/1104611
  6. Diffusion histology imaging differentiates distinct pediatric brain tumor histology vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-84252-3
  7. Differentiation of paediatric posterior fossa tumours by the multiregional and multiparametric MRI radiomics approach: a study on the selection of optimal multiple sequences and multiregions vol.95, pp.1129, 2022, https://doi.org/10.1259/bjr.20201302