DOI QR코드

DOI QR Code

Myocardial T1 and T2 Mapping: Techniques and Clinical Applications

  • Kim, Pan Ki (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Hong, Yoo Jin (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Im, Dong Jin (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Suh, Young Joo (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Park, Chul Hwan (Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Jin Young (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Chang, Suyon (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Lee, Hye-Jeong (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Hur, Jin (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Young Jin (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Choi, Byoung Wook (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine)
  • Received : 2016.01.30
  • Accepted : 2016.07.29
  • Published : 2017.01.01

Abstract

Cardiac magnetic resonance (CMR) imaging is widely used in various medical fields related to cardiovascular diseases. Rapid technological innovations in magnetic resonance imaging in recent times have resulted in the development of new techniques for CMR imaging. T1 and T2 image mapping sequences enable the direct quantification of T1, T2, and extracellular volume fraction (ECV) values of the myocardium, leading to the progressive integration of these sequences into routine CMR settings. Currently, T1, T2, and ECV values are being recognized as not only robust biomarkers for diagnosis of cardiomyopathies, but also predictive factors for treatment monitoring and prognosis. In this study, we have reviewed various T1 and T2 mapping sequence techniques and their clinical applications.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, et al. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol 2014;15:659-688 https://doi.org/10.3348/kjr.2014.15.6.659
  2. Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13 https://doi.org/10.1186/1532-429X-15-13
  3. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011;57:891-903 https://doi.org/10.1016/j.jacc.2010.11.013
  4. Radunski UK, Lund GK, Stehning C, Schnackenburg B, Bohnen S, Adam G, et al. CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 2014;7:667-675 https://doi.org/10.1016/j.jcmg.2014.02.005
  5. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013;15:92 https://doi.org/10.1186/1532-429X-15-92
  6. Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12:69 https://doi.org/10.1186/1532-429X-12-69
  7. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med 2014;71:2082-2095 https://doi.org/10.1002/mrm.24878
  8. Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified Look-Locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-1086 https://doi.org/10.1002/jmri.21119
  9. Maestrini V, Treibel TA, White SK, Fontana M, Moon JC. T1 mapping for characterization of intracellular and extracellular myocardial diseases in heart failure. Curr Cardiovasc Imaging Rep 2014;7:9287 https://doi.org/10.1007/s12410-014-9287-8
  10. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014;16:2 https://doi.org/10.1186/1532-429X-16-2
  11. Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2014;16:69 https://doi.org/10.1186/s12968-014-0069-x
  12. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-497 https://doi.org/10.1016/j.jcmg.2012.11.013
  13. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 2013;99:932-937 https://doi.org/10.1136/heartjnl-2012-303052
  14. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012;5:726-733 https://doi.org/10.1161/CIRCIMAGING.112.976738
  15. Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 2012;5:596-603
  16. Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007;58:34-40 https://doi.org/10.1002/mrm.21272
  17. Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Choudhury RP, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42 https://doi.org/10.1186/1532-429X-14-42
  18. Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, Yu CY, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 2015;8:37-46 https://doi.org/10.1016/j.jcmg.2014.07.016
  19. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013;6:392-398 https://doi.org/10.1161/CIRCIMAGING.112.000070
  20. Sado DM, Maestrini V, Piechnik SK, Banypersad SM, White SK, Flett AS, et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging 2015;41:1505-1511 https://doi.org/10.1002/jmri.24727
  21. Pedersen SF, Thrysoe SA, Robich MP, Paaske WP, Ringgaard S, Botker HE, et al. Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction. J Cardiovasc Magn Reson 2012;14:59 https://doi.org/10.1186/1532-429X-14-59
  22. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 2011;4:269-278 https://doi.org/10.1016/j.jcmg.2010.09.023
  23. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 2012;5:102-110 https://doi.org/10.1161/CIRCIMAGING.111.967836
  24. Roller FC, Harth S, Schneider C, Krombach GA. T1, T2 Mapping and Extracellular Volume Fraction (ECV): application, value and further perspectives in myocardial inflammation and cardiomyopathies. Rofo 2015;187:760-770 https://doi.org/10.1055/s-0034-1399546
  25. Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med 2014;189:109-112
  26. Usman AA, Taimen K, Wasielewski M, McDonald J, Shah S, Giri S, et al. Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: a pilot study. Circ Cardiovasc Imaging 2012;5:782-790 https://doi.org/10.1161/CIRCIMAGING.111.971101
  27. Giri S, Shah S, Xue H, Chung YC, Pennell ML, Guehring J, et al. Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction. Magn Reson Med 2012;68:1570-1578 https://doi.org/10.1002/mrm.24139
  28. von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013;15:53 https://doi.org/10.1186/1532-429X-15-53
  29. Moon JC, Treibel TA, Schelbert EB. T1 mapping for diffuse myocardial fibrosis: a key biomarker in cardiac disease? J Am Coll Cardiol 2013;62:1288-1289 https://doi.org/10.1016/j.jacc.2013.05.077
  30. Barison A, Grigoratos C, Todiere G, Aquaro GD. Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance. Heart Fail Rev 2015;20:731-749 https://doi.org/10.1007/s10741-015-9509-4
  31. Perea RJ, Ortiz-Perez JT, Sole M, Cibeira MT, de Caralt TM, Prat-Gonzalez S, et al. T1 mapping: characterisation of myocardial interstitial space. Insights Imaging 2015;6:189-202 https://doi.org/10.1007/s13244-014-0366-9
  32. de Jong S, van Veen TA, de Bakker JM, Vos MA, van Rijen HV. Biomarkers of myocardial fibrosis. J Cardiovasc Pharmacol 2011;57:522-535 https://doi.org/10.1097/FJC.0b013e31821823d9
  33. Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013;6:373-383 https://doi.org/10.1161/CIRCIMAGING.112.000192
  34. Schelbert EB, Testa SM, Meier CG, Ceyrolles WJ, Levenson JE, Blair AJ, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 2011;13:16 https://doi.org/10.1186/1532-429X-13-16
  35. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 2010;122:138-144 https://doi.org/10.1161/CIRCULATIONAHA.109.930636
  36. Flett AS, Sado DM, Quarta G, Mirabel M, Pellerin D, Herrey AS, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13:819-826 https://doi.org/10.1093/ehjci/jes102
  37. Barison A, Del Torto A, Chiappino S, Aquaro GD, Todiere G, Vergaro G, et al. Prognostic significance of myocardial extracellular volume fraction in nonischaemic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown) 2015;16:681-687 https://doi.org/10.2459/JCM.0000000000000275
  38. White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: the clinical relevance of noninvasive imaging. Heart 2012;98:773-779 https://doi.org/10.1136/heartjnl-2011-301515
  39. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 2012;33:1268-1278 https://doi.org/10.1093/eurheartj/ehr481
  40. Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 2013;15:56 https://doi.org/10.1186/1532-429X-15-56
  41. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 2013;6:955-962 https://doi.org/10.1016/j.jcmg.2013.01.011
  42. Liu CY, Liu YC, Wu C, Armstrong A, Volpe GJ, van der Geest RJ, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013;62:1280-1287 https://doi.org/10.1016/j.jacc.2013.05.078
  43. Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging 2012;5:897-907 https://doi.org/10.1016/j.jcmg.2012.04.006
  44. Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution--reproducibility study. Radiology 2006;238:1004-1012 https://doi.org/10.1148/radiol.2382041903
  45. Pykett IL, Rosen BR, Buonanno FS, Brady TJ. Measurement of spin-lattice relaxation times in nuclear magnetic resonance imaging. Phys Med Biol 1983;28:723-729 https://doi.org/10.1088/0031-9155/28/6/012
  46. Zhang Y, Yeung HN, O'Donnell M, Carson PL. Determination of sample time for T1 measurement. J Magn Reson Imaging 1998;8:675-681 https://doi.org/10.1002/jmri.1880080324
  47. Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970;41:250-251 https://doi.org/10.1063/1.1684482
  48. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004;52:141-146 https://doi.org/10.1002/mrm.20110
  49. Weingartner S, Akcakaya M, Basha T, Kissinger KV, Goddu B, Berg S, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 2014;71:1024-1034 https://doi.org/10.1002/mrm.24761
  50. Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson (1969) 1992;96:608-612 https://doi.org/10.1016/0022-2364(92)90347-A
  51. Hamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE. Mapping the future of cardiac MR imaging: case-based review of T1 and T2 mapping techniques. Radiographics 2014;34:1594-1611 https://doi.org/10.1148/rg.346140030
  52. Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, et al. Myocardial T1 mapping with MRI: comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011;34:1367-1373 https://doi.org/10.1002/jmri.22753
  53. Gai N, Turkbey EB, Nazarian S, van der Geest RJ, Liu CY, Lima JA, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med 2011;65:1407-1415 https://doi.org/10.1002/mrm.22716
  54. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14:63 https://doi.org/10.1186/1532-429X-14-63
  55. Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB. Optimized saturation recovery protocols for T1-mapping in the heart: influence of sampling strategies on precision. J Cardiovasc Magn Reson 2014;16:55 https://doi.org/10.1186/s12968-014-0055-3
  56. Chow K, Spottiswoode BS, Pagano JJ, Thompson RB. Improved precision in SASHA T1 mapping with a variable flip angle readout. J Cardiovasc Magn Reson 2014;16(Suppl 1):M9 https://doi.org/10.1186/1532-429X-16-S1-M9
  57. Chow K, Kellman P, Spottiswoode BS, Nielles-Vallespin S, Arai AE, Salerno M, et al. Saturation pulse design for quantitative myocardial T1 mapping. J Cardiovasc Magn Reson 2015;17:84 https://doi.org/10.1186/s12968-015-0187-0
  58. Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 2014;272:683-689 https://doi.org/10.1148/radiol.14140296
  59. Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009;11:56 https://doi.org/10.1186/1532-429X-11-56
  60. Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 2007;26:452-459 https://doi.org/10.1002/jmri.21028
  61. Foltz WD, Al-Kwifi O, Sussman MS, Stainsby JA, Wright GA. Optimized spiral imaging for measurement of myocardial T2 relaxation. Magn Reson Med 2003;49:1089-1097 https://doi.org/10.1002/mrm.10467
  62. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrastenhanced T1 mapping. J Am Coll Cardiol 2008;52:1574-1580 https://doi.org/10.1016/j.jacc.2008.06.049
  63. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006;113:1807-1816 https://doi.org/10.1161/CIRCULATIONAHA.106.174287
  64. Hong YJ, Park CH, Kim YJ, Hur J, Lee HJ, Hong SR, et al. Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging 2015;31 Suppl 1:115-122
  65. Sun Y, Weber KT. Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 1998;30 Suppl 1:3-8
  66. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-59 https://doi.org/10.1161/01.CIR.0000078641.19365.4C
  67. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006;48:1977-1985 https://doi.org/10.1016/j.jacc.2006.07.049
  68. Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 2008;51:2414-2421 https://doi.org/10.1016/j.jacc.2008.03.018
  69. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013;309:896-908 https://doi.org/10.1001/jama.2013.1363
  70. Kim EK, Chattranukulchai P, Klem I. Cardiac magnetic resonance scar imaging for sudden cardiac death risk stratification in patients with non-ischemic cardiomyopathy. Korean J Radiol 2015;16:683-695 https://doi.org/10.3348/kjr.2015.16.4.683
  71. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475-484 https://doi.org/10.1016/j.jcmg.2012.08.019
  72. Yoon JH, Son JW, Chung H, Park CH, Kim YJ, Chang HJ, et al. Relationship between myocardial extracellular space expansion estimated with post-contrast T1 mapping MRI and left ventricular remodeling and neurohormonal activation in patients with dilated cardiomyopathy. Korean J Radiol 2015;16:1153-1162 https://doi.org/10.3348/kjr.2015.16.5.1153
  73. Mordi I, Carrick D, Bezerra H, Tzemos N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging 2016;17:797-803 https://doi.org/10.1093/ehjci/jev216
  74. Nishii T, Kono AK, Shigeru M, Takamine S, Fujiwara S, Kyotani K, et al. Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy. Int J Cardiovasc Imaging 2014;30 Suppl 1:65-72 https://doi.org/10.1007/s10554-014-0414-z
  75. Jeserich M, Foll D, Olschewski M, Kimmel S, Friedrich MG, Bode C, et al. Evidence of myocardial edema in patients with nonischemic dilated cardiomyopathy. Clin Cardiol 2012;35:371-376 https://doi.org/10.1002/clc.21979
  76. aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015;16:210-216 https://doi.org/10.1093/ehjci/jeu183
  77. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436-1441 https://doi.org/10.1136/heartjnl-2012-302346
  78. Kono AK, Croisille P, Nishii T, Nishiyama K, Kyotani K, Shigeru M, et al. Cardiovascular magnetic resonance tagging imaging correlates with myocardial dysfunction and T2 mapping in idiopathic dilated cardiomyopathy. Int J Cardiovasc Imaging 2014;30 Suppl 2:145-152
  79. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and shortterm mortality. Circulation 2012;126:1206-1216 https://doi.org/10.1161/CIRCULATIONAHA.111.089409
  80. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2014;35:657-664 https://doi.org/10.1093/eurheartj/eht193
  81. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002;287:1308-1320
  82. Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 2010;363:552-563 https://doi.org/10.1056/NEJMoa1002659
  83. Malek LA, Werys K, Klopotowski M, Spiewak M, Milosz-Wieczorek B, Mazurkiewicz L, et al. Native T1-mapping for non-contrast assessment of myocardial fibrosis in patients with hypertrophic cardiomyopathy--comparison with late enhancement quantification. Magn Reson Imaging 2015;33:718-724 https://doi.org/10.1016/j.mri.2015.04.001
  84. Ellims AH, Iles LM, Ling LH, Hare JL, Kaye DM, Taylor AJ, et al. Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 2012;14:76 https://doi.org/10.1186/1532-429X-14-76
  85. Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging 2013;6:415-422 https://doi.org/10.1161/CIRCIMAGING.112.000333
  86. O'Mahony C, Elliott P. Anderson-Fabry disease and the heart. Prog Cardiovasc Dis 2010;52:326-335 https://doi.org/10.1016/j.pcad.2009.11.002
  87. Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003;24:2151-2155 https://doi.org/10.1016/j.ehj.2003.09.017
  88. Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014;16:99 https://doi.org/10.1186/s12968-014-0099-4
  89. Thompson RB, Chow K, Khan A, Chan A, Shanks M, Paterson I, et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013;6:637-645 https://doi.org/10.1161/CIRCIMAGING.113.000482
  90. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med 1997;337:898-909 https://doi.org/10.1056/NEJM199709253371306
  91. Ruberg FL. T1 mapping in cardiac amyloidosis: can we get there from here? JACC Cardiovasc Imaging 2013;6:498-500 https://doi.org/10.1016/j.jcmg.2013.01.007
  92. Kyle RA, Greipp PR, O'Fallon WM. Primary systemic amyloidosis: multivariate analysis for prognostic factors in 168 cases. Blood 1986;68:220-224
  93. Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013;6:34-39 https://doi.org/10.1161/CIRCIMAGING.112.978627
  94. Falk RH, Skinner M. The systemic amyloidoses: an overview. Adv Intern Med 2000;45:107-137
  95. Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008;10:54 https://doi.org/10.1186/1532-429X-10-54
  96. Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping. J Magn Reson Imaging 2013;38:1591-1595 https://doi.org/10.1002/jmri.24078
  97. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging 2009;2:1369-1377 https://doi.org/10.1016/j.jcmg.2009.08.008
  98. Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 2015;20:133-144 https://doi.org/10.1007/s10741-014-9470-7
  99. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic lightchain amyloidosis. Eur Heart J 2015;36:244-251 https://doi.org/10.1093/eurheartj/ehu444
  100. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157-165 https://doi.org/10.1016/j.jcmg.2013.10.008
  101. Sparrow P, Amirabadi A, Sussman MS, Paul N, Merchant N. Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis. J Magn Reson Imaging 2009;30:942-946 https://doi.org/10.1002/jmri.21918
  102. Luetkens JA, Doerner J, Thomas DK, Dabir D, Gieseke J, Sprinkart AM, et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014;273:383-392 https://doi.org/10.1148/radiol.14132540
  103. Iles LM, Taylor AJ. Is one better than two?: T1 mapping in myocarditis. JACC Cardiovasc Imaging 2013;6:1059-1061 https://doi.org/10.1016/j.jcmg.2013.05.015
  104. Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6:1048-1058
  105. Ferreira VM, Piechnik SK, Dall'Armellina E, Karamitsos TD, Francis JM, Ntusi N, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson 2014;16:36 https://doi.org/10.1186/1532-429X-16-36
  106. Luetkens JA, Homsi R, Sprinkart AM, Doerner J, Dabir D, Kuetting DL, et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging 2016;17:154-161 https://doi.org/10.1093/ehjci/jev246
  107. Bohnen S, Radunski UK, Lund GK, Kandolf R, Stehning C, Schnackenburg B, et al. Performance of T1 and T2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent-onset heart failure. Circ Cardiovasc Imaging 2015;8:e003073
  108. Rajiah P, Desai MY, Kwon D, Flamm SD. MR imaging of myocardial infarction. Radiographics 2013;33:1383-1412 https://doi.org/10.1148/rg.335125722
  109. Arai AE. Magnetic resonance imaging for area at risk, myocardial infarction, and myocardial salvage. J Cardiovasc Pharmacol Ther 2011;16:313-320 https://doi.org/10.1177/1074248411412378
  110. Friedrich MG, Kim HW, Kim RJ. T2-weighted imaging to assess post-infarct myocardium at risk. JACC Cardiovasc Imaging 2011;4:1014-1021 https://doi.org/10.1016/j.jcmg.2011.07.005
  111. Bulluck H, White SK, Rosmini S, Bhuva A, Treibel TA, Fontana M, et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. J Cardiovasc Magn Reson 2015;17:73 https://doi.org/10.1186/s12968-015-0173-6
  112. Dall'Armellina E, Piechnik SK, Ferreira VM, Si QL, Robson MD, Francis JM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 2012;14:15 https://doi.org/10.1186/1532-429X-14-15
  113. Choi EY, Hwang SH, Yoon YW, Park CH, Paek MY, Greiser A, et al. Correction with blood T1 is essential when measuring post-contrast myocardial T1 value in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2013;15:11 https://doi.org/10.1186/1532-429X-15-11
  114. Chan W, Duffy SJ, White DA, Gao XM, Du XJ, Ellims AH, et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging 2012;5:884-893 https://doi.org/10.1016/j.jcmg.2012.03.015
  115. Ferreira VM, Holloway CJ, Piechnik SK, Karamitsos TD, Neubauer S. Is it really fat? Ask a T1-map. Eur Heart J Cardiovasc Imaging 2013;14:1060 https://doi.org/10.1093/ehjci/jet095
  116. Kali A, Choi EY, Sharif B, Kim YJ, Bi X, Spottiswoode B, et al. Native T1 Mapping by 3-T CMR Imaging for Characterization of Chronic Myocardial Infarctions. JACC Cardiovasc Imaging 2015;8:1019-1030 https://doi.org/10.1016/j.jcmg.2015.04.018
  117. Bauner KU, Biffar A, Theisen D, Greiser A, Zech CJ, Nguyen ET, et al. Extracellular volume fractions in chronic myocardial infarction. Invest Radiol 2012;47:538-545 https://doi.org/10.1097/RLI.0b013e3182631c37
  118. Puntmann VO, D'Cruz D, Smith Z, Pastor A, Choong P, Voigt T, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 2013;6:295-301 https://doi.org/10.1161/CIRCIMAGING.112.000151
  119. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Rai AB, Matthews PM, et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis--a clinical study using myocardial T1-mapping and extracellular volume quantification. J Cardiovasc Magn Reson 2014;16:21 https://doi.org/10.1186/1532-429X-16-21
  120. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Matthews PM, Robson MD, et al. Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 mapping. JACC Cardiovasc Imaging 2015;8:526-536 https://doi.org/10.1016/j.jcmg.2014.12.025
  121. Mavrogeni S, Markousis-Mavrogenis G, Papavasiliou A, Kolovou G. Cardiac involvement in Duchenne and Becker muscular dystrophy. World J Cardiol 2015;7:410-414 https://doi.org/10.4330/wjc.v7.i7.410
  122. Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjager M. Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: correlations and blood normalization. Radiology 2014;271:365-372 https://doi.org/10.1148/radiol.13131225

Cited by

  1. Modern Imaging Techniques in Cardiomyopathies vol.121, pp.7, 2017, https://doi.org/10.1161/circresaha.117.309600
  2. Native myocardial T1 time can predict development of subsequent anthracycline‐induced cardiomyopathy vol.5, pp.4, 2017, https://doi.org/10.1002/ehf2.12277
  3. A new look at the heart-novel imaging techniques vol.29, pp.1, 2017, https://doi.org/10.1007/s00399-017-0546-7
  4. Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions vol.46, pp.5, 2017, https://doi.org/10.1177/0300060517721071
  5. Clinical Application of T1 and T2 Mapping in Cardiac Magnetic Resonance Imaging for Nonischemic Cardiomyopathy: A Case-Based Review vol.2, pp.1, 2018, https://doi.org/10.22468/cvia.2017.00185
  6. State of the Art in Cardiovascular T2 Mapping: on the Way to a Cardiac Biomarker? vol.11, pp.7, 2017, https://doi.org/10.1007/s12410-018-9455-3
  7. Parametric Imaging for the Assessment of Cardiac Motion: A Review vol.9, pp.3, 2018, https://doi.org/10.1007/s13239-018-0362-1
  8. Correlations of T2* Mapping with Delayed Gadolinium Enhancement in Chronic Myocardial Infarction Magnetic Resonance Imaging vol.15, pp.4, 2017, https://doi.org/10.5812/iranjradiol.12688
  9. Defining myocardial fibrosis in haemodialysis patients with non-contrast cardiac magnetic resonance vol.18, pp.None, 2018, https://doi.org/10.1186/s12872-018-0885-2
  10. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  11. Brain Amide Proton Transfer Imaging of Rat With Alzheimer’s Disease Using Saturation With Frequency Alternating RF Irradiation Method vol.11, pp.None, 2017, https://doi.org/10.3389/fnagi.2019.00217
  12. Evaluation after Orthotopic Heart Transplant: What the Radiologist Should Know vol.39, pp.2, 2017, https://doi.org/10.1148/rg.2019180141
  13. Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI vol.291, pp.3, 2019, https://doi.org/10.1148/radiol.2019182304
  14. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.3, pp.3, 2017, https://doi.org/10.22468/cvia.2019.00108
  15. Cardiac Magnetic Resonance Fingerprinting: Technical Developments and Initial Clinical Validation vol.21, pp.9, 2017, https://doi.org/10.1007/s11886-019-1181-1
  16. Guideline for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging-Part 1: Standardized Protocol vol.20, pp.9, 2017, https://doi.org/10.3348/kjr.2019.0398
  17. Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature vol.60, pp.9, 2017, https://doi.org/10.1177/0284185118820058
  18. Cardiac MRI Evaluation of Myocarditis vol.21, pp.11, 2019, https://doi.org/10.1007/s11936-019-0757-9
  19. Point estimate and reference normality interval of MRI-derived myocardial extracellular volume in healthy subjects: a systematic review and meta-analysis vol.29, pp.12, 2019, https://doi.org/10.1007/s00330-019-06185-w
  20. A personalized computational model of edema formation in myocarditis based on long-axis biventricular MRI images vol.20, pp.suppl6, 2017, https://doi.org/10.1186/s12859-019-3139-0
  21. Guidelines for Cardiovascular Magnetic Resonance Imaging from Korean Society of Cardiovascular Imaging (KOSCI) - Part 1: Standardized Protocol vol.23, pp.4, 2017, https://doi.org/10.13104/imri.2019.23.4.296
  22. Characteristics of Recent Articles Published in the Korean Journal of Radiology Based on the Citation Frequency vol.21, pp.12, 2020, https://doi.org/10.3348/kjr.2020.1322
  23. Technical Aspects of in vivo Small Animal CMR Imaging vol.8, pp.None, 2020, https://doi.org/10.3389/fphy.2020.00183
  24. Pancreatic extracellular volume fraction using T1 mapping in patients with impaired glucose intolerance vol.45, pp.2, 2017, https://doi.org/10.1007/s00261-019-02384-7
  25. The Role of Cardiac MRI in the Diagnosis of Fabry Disease vol.81, pp.2, 2020, https://doi.org/10.3348/jksr.2020.81.2.302
  26. Cardiac MRI for the evaluation of cardiac neoplasms vol.75, pp.4, 2020, https://doi.org/10.1016/j.crad.2019.11.014
  27. Use of Early T1 Mapping for MRI in Acute Myocarditis vol.295, pp.2, 2017, https://doi.org/10.1148/radiol.2020200171
  28. Characterization of parotid gland tumors using T2 mapping imaging: initial findings vol.61, pp.5, 2017, https://doi.org/10.1177/0284185119875646
  29. Towards measuring the effect of flow in blood T 1 assessed in a flow phantom and in vivo vol.65, pp.9, 2017, https://doi.org/10.1088/1361-6560/ab7ef1
  30. Myocardial tissue characterization by gadolinium-enhanced cardiac magnetic resonance imaging for risk stratification of adverse events in hypertrophic cardiomyopathy vol.36, pp.6, 2017, https://doi.org/10.1007/s10554-020-01808-6
  31. Three‐dimensional simultaneous brain T1, T2, and ADC mapping with MR Multitasking vol.84, pp.1, 2017, https://doi.org/10.1002/mrm.28092
  32. Performance of two Methods for Cardiac MRI Edema Mapping: Dual-Contrast Fast Spin-Echo and T2 Prepared Balanced Steady State Free Precession vol.192, pp.7, 2017, https://doi.org/10.1055/a-1088-3478
  33. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair vol.15, pp.4, 2020, https://doi.org/10.1088/1748-605x/ab797a
  34. Updating the Risk Stratification for Sudden Cardiac Death in Cardiomyopathies: The Evolving Role of Cardiac Magnetic Resonance Imaging. An Approach for the Electrophysiologist vol.10, pp.8, 2017, https://doi.org/10.3390/diagnostics10080541
  35. Diagnosis, Evaluation, and Treatment of Myocarditis in Children vol.67, pp.5, 2017, https://doi.org/10.1016/j.pcl.2020.06.013
  36. Fast and accurate calculation of myocardial T1 and T2 values using deep learning Bloch equation simulations (DeepBLESS) vol.84, pp.5, 2020, https://doi.org/10.1002/mrm.28321
  37. Utility of T2 mapping in the staging of thyroid-associated ophthalmopathy: efficiency of region of interest selection methods vol.61, pp.11, 2017, https://doi.org/10.1177/0284185120905032
  38. Cardiac MRI in this Era vol.5, pp.4, 2017, https://doi.org/10.1055/s-0040-1722383
  39. Cardiovascular magnetic resonance native T 2 and T 2 * quantitative values for cardiomyopathies and heart transplantations: a systematic review and meta-analysis vol.22, pp.1, 2017, https://doi.org/10.1186/s12968-020-00627-x
  40. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI vol.20, pp.1, 2017, https://doi.org/10.1186/s40644-020-00365-4
  41. Can T1 mapping be an alternative of post-contrast magnetic resonance sequences in patients with surgically corrected tetralogy of Fallot? vol.24, pp.6, 2020, https://doi.org/10.14744/anatoljcardiol.2020.73576
  42. Cardiovascular Magnetic Resonance Mapping and Strain Assessment for the Diagnosis of Cardiac Involvement in Idiopathic Inflammatory Myopathy Patients With Preserved Left Ventricular Ejection Fraction vol.36, pp.4, 2017, https://doi.org/10.1097/rti.0000000000000578
  43. The Current Practice of Cardiac Magnetic Resonance Imaging for Congenital Heart Disease in Asia: A Survey to Promote a Better Future Practice vol.5, pp.4, 2017, https://doi.org/10.22468/cvia.2021.00276
  44. Regional Amyloid Burden Differences Evaluated Using Quantitative Cardiac MRI in Patients with Cardiac Amyloidosis vol.22, pp.6, 2017, https://doi.org/10.3348/kjr.2020.0579
  45. Value CMR: Towards a Comprehensive, Rapid, Cost-Effective Cardiovascular Magnetic Resonance Imaging vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8851958
  46. T2 mapping histogram at extraocular muscles for predicting the response to glucocorticoid therapy in patients with thyroid-associated ophthalmopathy vol.76, pp.2, 2017, https://doi.org/10.1016/j.crad.2020.09.005
  47. Multiparameter MRI Model With DCE-MRI, DWI, and Synthetic MRI Improves the Diagnostic Performance of BI-RADS 4 Lesions vol.11, pp.None, 2017, https://doi.org/10.3389/fonc.2021.699127
  48. Heterogeneity analysis of MRI T2 maps for measurement of early tumor response to radiotherapy vol.34, pp.3, 2017, https://doi.org/10.1002/nbm.4454
  49. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging vol.12, pp.2, 2017, https://doi.org/10.1017/s2040174420001233
  50. Cardiovascular Effects of Unilateral Nephrectomy in Living Kidney Donors at 5 Years vol.77, pp.4, 2021, https://doi.org/10.1161/hypertensionaha.120.15398
  51. Quantification of T1, T2 relaxation times from Magnetic Resonance Fingerprinting radially undersampled data using analytical transformations vol.80, pp.None, 2021, https://doi.org/10.1016/j.mri.2021.04.013
  52. Comparison Between Time-Resolved Magnetic Resonance Angiography and Diagnostic Digital Subtraction Angiography in the Vascular Assessment of Nonspecific Aorto-Arteritis Patients: A Prospective Study vol.55, pp.6, 2021, https://doi.org/10.1177/15385744211010593
  53. Intensity standardization methods in magnetic resonance imaging of head and neck cancer vol.20, pp.None, 2017, https://doi.org/10.1016/j.phro.2021.11.001
  54. T2 mapping of the peritumoral infiltration zone of glioblastoma and anaplastic astrocytoma vol.34, pp.5, 2017, https://doi.org/10.1177/1971400921989325