DOI QR코드

DOI QR Code

Comparative Effects of Dietary Quercetin and Rutin in Rats Fed with the Lieber-DeCarli Ethanol Diet

  • Seo, Su-Jeong (Division of Biomedical Convergence, College of Medical Biosciences, Kangwon National University) ;
  • Park, Cheol-Ho (Division of Biomedical Convergence, College of Medical Biosciences, Kangwon National University) ;
  • Ko, In-Young (Division of Biomedical Convergence, College of Medical Biosciences, Kangwon National University) ;
  • Jeong, Yeon-Ho (Division of Biomedical Convergence, College of Medical Biosciences, Kangwon National University) ;
  • Choi, Yong-Soon (Division of Biomedical Convergence, College of Medical Biosciences, Kangwon National University)
  • Received : 2017.05.25
  • Accepted : 2017.08.07
  • Published : 2017.09.29

Abstract

Flavonoids including quercetin and rutin are a group of naturally occurring compounds widely distributed in plants, especially in buckwheat. Thus, cereal and the leaf of the plant have increasingly used as a source of nutritional and functional foods such as noodle, cake or soup in Korea, Japan and other countries. This study investigated comparative effects of dietary rutin rich in buckwheat and its aglycone, quercetin, on serum biomarkers and antioxidant parameters in rats treated with chronic ethanol. Rats were fed with the liquid diets prepared by the method of Lieber Decarli. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities increased significantly by alcohol feeding. Dietary flavonoids including rutin, quercetin and their mixtures (1/1, v/v) decreased significantly the activities of serum ALT whereas the feeding of quercetin decreased only the activity of serum AST. The concentration of serum malondialdehydes elevated by chronic alcohol feeding decreased markedly in all the experimental groups that were fed with the flavonoids; however, the combined administration of quercetin or rutin, but not that of rutin or quercetin alone decreased significantly the concentration of liver malondialdehydes to the normal range in rats fed without ethanol. Our results suggested that dietary combined mixture of rutin and quercetin might be effective in ameliorating adverse responses seen in rats exposed to ethanol chronically.

Keywords

References

  1. Nijveldt, R. J.; van Nood, E.; van Hoorn, D. E.; Boelens, P. G.; van Norren, K.; van Leeuwen, P. A. Am. J. Clin. Nutr. 2001, 74, 418-425. https://doi.org/10.1093/ajcn/74.4.418
  2. Romano, B.; Pagano, E.; Montanaro, V.; Fortunato, A. L.; Milic, N.; Borrelli, F. Phytother. Res. 2013, 27, 1588-1596. https://doi.org/10.1002/ptr.5023
  3. Boots, A. W.; Haenen, G. R.; Bast, A. Eur. J. Pharmacol. 2008, 585, 325-337. https://doi.org/10.1016/j.ejphar.2008.03.008
  4. Kovalskii, I. V.; Krasnyuk, I. I.; krasnyuk, Jr. I. I.; Nikulina, O. I.; Belyatskaya, A. V.; Kharitonov, Yu. Ya.; Feldman, N. B.; Lutsenko, S. V. Pharmaceutical Chem. J. 2014, 48, 73-76. https://doi.org/10.1007/s11094-014-1050-6
  5. Crespy, V.; Morand, C.; Besson, C.; Monach, C.; Demigne, C.; Remesy, C. J. Agric. Food Chem. 2002, 50, 618-621. https://doi.org/10.1021/jf010919h
  6. Scalbert, A.; Morand, C.; Monach, C.; Remesy, C. Biomed. Pharmacother. 2002, 56, 276-282. https://doi.org/10.1016/S0753-3322(02)00205-6
  7. Carbonaro, M; Grant, G. Ann. Nutr. Metab. 2005, 49, 178-182. https://doi.org/10.1159/000086882
  8. Nordmann, R.; Ribière, C.; Rouach, H. Free Radic. Biol. Med. 1992, 12, 219-240. https://doi.org/10.1016/0891-5849(92)90030-K
  9. Tang, Y.; Gao, C.; Xing, M.; Li, Y.; Zhu, L.; Wang, D.; Yang, X.; Liu, L.; Yao, P. Food Chem. Toxicol. 2012, 50, 1194-1200. https://doi.org/10.1016/j.fct.2012.02.008
  10. Shenbagam, M.; Nalini, N. Fundam. Clin. Pharmacol. 2011, 25, 493-502. https://doi.org/10.1111/j.1472-8206.2010.00861.x
  11. Botros, M.; Sikaris, K.A. Clin. Biochem. Rev. 2013, 34, 117-130.
  12. Lieber, C. S.; DeCarli, L. M. Alcohol Alcohol. 1989, 24, 197-211.
  13. Carr, T. P.; Andersen, C. J.; Rudel. L. L. Clin. Biochem. 1993, 26, 39-42. https://doi.org/10.1016/0009-9120(93)90015-X
  14. Yagi, K. Chem. Phys. Lipids. 1987, 45, 337-351. https://doi.org/10.1016/0009-3084(87)90071-5
  15. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265-275.
  16. Gramenzi, A.; Caputo, F.; Biselli, M.; Kuria, F.; Loggi, E.; Andreone, P.; Bernardi, M. Aliment Pharmacol. Ther. 2006, 24, 1151-1161. https://doi.org/10.1111/j.1365-2036.2006.03110.x
  17. Kim, M. K.; Hyun, S. H.; Choung, S. Y. J. Health Sci. 2006, 52, 344-351. https://doi.org/10.1248/jhs.52.344
  18. Baraona, E.; Lieber, C. S. J. Lipid Res. 1979, 20, 289-315.
  19. Zeman, F. J. In Clinical Nutrition and Dietetics (2/e): Liver disease and alcoholism; Jones, L Ed; Macmillan Publishing; U.S.A, 1991, pp 517-553.
  20. Keshavarzian, A.; Farhadi, A.; Forsyth, C. B.; Rangan, J.; Jakate, S.; Shaikh, M.; Banan, A.; Fields, J. Z. J. Hepatol. 2009, 50, 538-547.
  21. Nolan, J. P. Hepatology 2010, 52, 1829-1835. https://doi.org/10.1002/hep.23917
  22. Wang, H. J.; Zakhari, S.; Jung, M. K. World J. Gastroenterol. 2010, 16, 1304-1313. https://doi.org/10.3748/wjg.v16.i11.1304
  23. Kim, H; Kong, H.; Choi, B.; Yang, Y.; Kim, Y.; Lim, M. J.; Neckers, L.; Jung, Y. Pharm. Res. 2005, 22, 1499-1509. https://doi.org/10.1007/s11095-005-6250-z
  24. Vuppalanchi, R.; Juluri, R.; Bell, L. N.; Ghabril, M.; Kamendulis, L.; Klaunig, J. E.; Saxena, R.; Agarwal, D.; Johnson, M. S.; Chalasani, N. Am. J. Med. Sci. 2011, 342, 314-317. https://doi.org/10.1097/MAJ.0b013e31821d9905

Cited by

  1. Hydrothermal Treatment Enhances Antioxidant Activity and Intestinal Absorption of Rutin in Tartary Buckwheat Flour Extracts vol.9, pp.1, 2017, https://doi.org/10.3390/foods9010008
  2. Dendropanax morbifera Leaf Polyphenolic Compounds: Optimal Extraction Using the Response Surface Method and Their Protective Effects against Alcohol-Induced Liver Damage vol.9, pp.2, 2020, https://doi.org/10.3390/antiox9020120