DOI QR코드

DOI QR Code

The Effects of Antioxidants, N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione or Cysteamine on the Development of in vitro Fertilized bovine Oocytes

N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione 및 Cysteamine 항산화제가 소 체외수정란의 발생에 미치는 영향

  • Kim, Min-Su (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Chan-Lan (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Namtea (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Jeon, Ik Soo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA) ;
  • Kim, Sung Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
  • 김민수 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김찬란 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김남태 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 전익수 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김성우 (농촌진흥청 국립축산과학원 가축유전자원센터)
  • Received : 2017.08.13
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

To increase the productivity of in vitro development, the antioxidants have been used for culture system of bovine oocytes and embryos. However, comparative studies on these molecules are rare and direct beneficial effects on blastocyst production cannot be discriminated for best results. The study was conducted to determine the influence of N-acetyl-L-cysteine (NAC), N-acetyl-L-cysteine amide (NACA), glutathione (GSH) and cysteamime (CYS) on maturation competence of COCs from GV to MII stage and productivity of blastocyst formation during in vitro fertilization and culture. There was no difference among maturation rates of oocytes to metaphase II with polar body with antioxidants for any of the treatment groups (p>0.05). However, the significant improvement on the rate of blastocysts ($32.3{\pm}5.0%$) was found in 0.1 mM CYS treatment than 0.3 mM NAC, 0.2 mM NACA or 0.5mM GSH (p<0.05). The addition of NAC ($18.8{\pm}3.7%$) or NACA ($21.2{\pm}3.9%$) did not improve development competence to morula and blastocysts than control ($24.4{\pm}4.1%$) and GSH ($26.5{\pm}5.0%$) (p>0.05). Our study showed that medium supplementation with CYS during IVM and IVC improved the rate of bovine embryo development but not with NAC, NACA and GSH addition.

소 난자의 체외 성숙 및 발달과정에서 항산화제의 첨가는 발생과정에 생성될 수 있는 ROS를 조절하여 체외발생에 도움을 주는 것으로 알려져 있으나 이에 대한 연구는 아직 미흡하다고 판단된다. 본 연구에서는 소 수정란의 성숙과정과 발생과정에서 ROS에 대한 방어 기작에 필요한 물질로 -SH기(thiol group)을 함유하고 있는 NAC, NACA, GSH 및 CYS를 첨가하여 COCs의 난자 성숙율과 체외 수정 후 수정란의 발생율을 조사하였다. 도축장 유래 난소의 성숙율은 항산화제 처리군과 대조군에서 차이를 보여주지 않았으나(p>0.05), 배반포 형성율은 0.1 mM CYS을 처리한 실험군에서 $32.3{\pm}5.0%$로 유의적으로 높게 관찰되었다(p<0.05). 항산화제 0.3 mM NAC, 0.2 mM NACA 또는 0.5 mM GSH를 처리하는 실험군에서 배반포 형성율은 각각 $18.8{\pm}3.7%$, $21.2{\pm}3.9%$$26.5{\pm}5.0%$로 조사되었다. 그러므로, 항산화 물질인 NAC, NACA, GSH 및 CYS을 난자의 성숙 및 수정란 배양과정에 첨가하면 난자의 성숙에 영향이 없으나, CYS처리군이 배반포형성율에 효과가 있음을 밝혔다(p<0.05).

Keywords

References

  1. Ali AA, Bilodeau JF and Sirard MA. 2003. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology 59:939-949. https://doi.org/10.1016/S0093-691X(02)01125-1
  2. Besouw M, Masereeuw R, van den Heuvel L and Levtchenko E. 2013. Cysteamine: an old drug with new potential. Drug Disc. Today 18:785-792 https://doi.org/10.1016/j.drudis.2013.02.003
  3. Biladeau JF, Blanchette S, Gagnon C and Sirad MA. 2001. Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology 56:275-286. https://doi.org/10.1016/S0093-691X(01)00562-3
  4. Boquest AC, Abeydeera LR, Wang WH and Day BN. 1999. Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro. Theriogenology 51:1311-1319. https://doi.org/10.1016/S0093-691X(99)00075-8
  5. Brackett BG and Oliphant G. 1975. Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12:260-274. https://doi.org/10.1095/biolreprod12.2.260
  6. Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, and Willani G. 2005. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term diatary treatment with N-acetyl cysteine. Free Radic. Biol. Med. 38:796-805. https://doi.org/10.1016/j.freeradbiomed.2004.11.034
  7. Curtin JF, Donovan M and Cotter TG. 2002. Regulation and measurement of oxidative stress in apoptosis. J. Immunol. Methods. 265:49-72. https://doi.org/10.1016/S0022-1759(02)00070-4
  8. de Matos DG, Furnus CC, Moses DF and Baldassarre H. 1995. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol. Reprod. Dev. 42:432-436. https://doi.org/10.1002/mrd.1080420409
  9. de Matos DG, Furnus CC and Moses DF. 1997. Glutathione systhesis during in vitro maturation of bovine oocytes: Role of cumulus cells Biol. Reprod. 57:1420-1425. https://doi.org/10.1095/biolreprod57.6.1420
  10. Dieleman SJ, Hendriksen PJ, Viuff D, Thomsen PD, Hyttel P, Knijn HM, Wrenzycki C, Kruip TA, Niemann H, Gadella BM, Bevers MM and Vos PL. 2002. Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57:5-20. https://doi.org/10.1016/S0093-691X(01)00655-0
  11. Goldstein GA. 2013. N-acetylcystein amide (NAC amide) for the treatment of disease and conditions associated with oxidative stress. US patent, US 8354449 B2.
  12. Goud AP, Goud PT, Diamond MP, Gonik B and Abu-Soud HM. 2008. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44:1295-304. https://doi.org/10.1016/j.freeradbiomed.2007.11.014
  13. Halasi M, Wang M, Chavan TS, Gaponenko V, Hay N and Gartel AL. 2013. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 454:201-208. https://doi.org/10.1042/BJ20130282
  14. Iwata H, Akamatsu S, Minami N and Yamada M. 1998. Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose. Theriogenology 50:365-375. https://doi.org/10.1016/S0093-691X(98)00146-0
  15. Liu Z. Foote RH and Yang X. 1995. Development of early bovine embryos in co-culture with KSOM and taurine, superoxide dismutase or insulin. Theriogenology 44:741-750. https://doi.org/10.1016/0093-691X(95)00253-5
  16. Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, Ji G, Liu N, Tang X, Baltz JM, Keefe DL and Liu L. 2012. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine. Hum. Reprod. 27:1411-1420. https://doi.org/10.1093/humrep/des019
  17. Livingston T, Eberhardt D, Edwards JL and Godkin J. 2004. Retinol improves bovine embryonic development in vitro. Reprod. Biol. Endoc. 2:83 https://doi.org/10.1186/1477-7827-2-83
  18. Luberda Z. 2005. The role of glutathione in mammalian gametes. Reprod. Biol. 5:5-17.
  19. Merton JS, Knijn HM, Flapper H, Dotinga F, Roelen BA, Vos PL and Mullaart E. 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology 80:365-371. https://doi.org/10.1016/j.theriogenology.2013.04.025
  20. Paryka A, Nizanski W, Bajzert J. Lukaszewicz E and Ochota M. 2013. The effect of cystein and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology 67:132-136. https://doi.org/10.1016/j.cryobiol.2013.06.002
  21. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB and Wolf E. 2001. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 2001 64:904-909. https://doi.org/10.1095/biolreprod64.3.904
  22. Sun SY. 2010. N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol. Ther. 9:109-110. https://doi.org/10.4161/cbt.9.2.10583
  23. Sun WJ, Pang YW, Liu Y, Hao HS, Zhao XM, Qin T, Zhu HB and Du WH. 2015. Exogenous glutathione supplementation in culture medium improves the bovine embryo development after in vitro fertilization. Theriogenology 84:716-723. https://doi.org/10.1016/j.theriogenology.2015.05.001
  24. Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N and Okano A. 1993. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49:228-232. https://doi.org/10.1095/biolreprod49.2.228
  25. Takahashi M, Nagai T, Okamura N, Takahashi H and Okano A. 2002. Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol. Reprod. 66:562-567. https://doi.org/10.1095/biolreprod66.3.562
  26. Ufer C and Wang CC. 2011. The roles of glutathione peroxidases during embryo development. Front. Mol. Neurosci. 4:12.
  27. Wilmer MJ, Kluijtmans LAJ, van der Veldena TJ, Willems PH, Schefferd PG, Masereeuwe R, Monnensf LA, van den Heuvela LP and Levtchenko EN. 2011. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim. Biophys. Acta. 1812:643-651. https://doi.org/10.1016/j.bbadis.2011.02.010
  28. Wu W, Abraham L, Ogony J, Matthews R, Goldstein G and Ercal N. 2008. Effects of N-acetylcystein amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in chinese hamster ovary cells. Life Sci. 82:1122-1130. https://doi.org/10.1016/j.lfs.2008.03.016
  29. Zmuda J and Friedenson B. 1983. Changes in intracellular glutathione levels in stimulated and unstimulated lymphocytes in the presence of 2-mercaptoethanol or cysteine. J. Immunol. 130:362-364.