DOI QR코드

DOI QR Code

Evaluation on Undrained Shear Strength considering Consolidation Characteristics for Busan Clay

부산 점토의 압밀특성과 연계한 비배수전단강도 평가

  • Kim, Ju-Hyun (Department of Civil Engineering, Dongshin University)
  • Received : 2017.09.04
  • Accepted : 2017.09.19
  • Published : 2017.09.30

Abstract

In this study, a series of laboratory and in-situ tests such as FVTs and CPTUs were carried out to evaluate undrained shear strength related to quasi overconsolidated characteristics in the near-surface clay at Busan new port. Using unconfined compression and field vane test results, correlation between undrained shear strength and effective overburden pressure, that is, equation of $10+0.262{\sigma}^{\prime}v_0$ (kPa) was obtained. From oedometer tests, OCR is around 1.9 at depths lower than 7 m and OCR below this depth is very close to unit. As stated by Hanzawa et al. (1983), a natural clay deposit in the near-surface, even in normally consolidated state, is more and less apparently overconsolidated due to aging effects such as chemical bonding. Based on this concept, it can be inferred that intercept of equation is mobilized due to chemical bonding irrespective of effective overburden pressure and strength incremental ratio in normally consolidated state is 0.262. From CPTU results, same trend was confirmed. The further study should be necessary to judge whether upper clay is under overconsolidated state due to chemical bonding or not based on the depositional environment.

본 연구에서는 부산 신항에서 지표면 근처의 상부 점토의 유사 과압밀 특성과 연계한 비배수전단강도를 평가하기 위하여 현장베인 및 피에조콘관입시험을 실시하였다. 일축압축 및 현장베인시험 결과를 이용하여 비배수전단강도($s_u$)와 유효상재압과의 상관관계식 $10+0.262{\sigma}^{\prime}v_0$(kPa)이 얻어졌다. 표준압밀시험결과로부터 7m 심도까지 과압밀비(OCR) 1.9 정도이며, 심도가 깊어질수록 정규압밀상태의 과압밀비(OCR) 1.0에 근접한 경향이 얻어졌다. Hanzawa(1983)에 따르면, 정규압밀된 자연퇴적 점토지반에서도 화학적 결합 작용 등에 의한 연대효과로 인해 지표면에 가까운 위치에서 과압밀 경향을 보이는 것으로 제시되었다. 이러한 개념 하에서, 부산점토 지반은 지표면에서부터 화학적 결합작용으로 인해 10kPa의 비배수전단강도가 유효상재압에 관계없이 발휘되며, 정규압밀상태의 강도증가율은 0.262로 추정할 수 있다. 이에 대해 퇴적 환경 변화로 인해 지표면에 가까운 위치에서 화학적 결합 작용에 의한 유사 과압밀 경향이 발생되었는지에 대해서는 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. ASTM D422 (1990), "Standard test method for particle-size analysis of soils", ASTM International, West Conshohocken, PA.
  2. ASTM D2487 (2000), "Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)", ASTM International, West Conshohocken, PA.
  3. ASTM D4318 (2000), "Standard test methods for liquid limit, plastic limit and plasticity index of soils", ASTM International, West Conshohocken, PA.
  4. ASTM D2166 (2003), "Standard test method for unconfined compressive strength of cohesive soil", ASTM International, West Conshohocken, PA.
  5. ASTM D2578 (2003), "Standard test method for field vane shear test in cohesive soil", ASTM International, West Conshohocken, PA.
  6. ASTM D5778 (2003), "Standard test method for electronic friction cone piezocone penetration testing of soils", ASTM International, West Conshohocken, PA.
  7. Bjerrum, L. (1967), "Engineering geology of Norwegian normally consolidated marine clay as related to settlements of buildings", 7th Rankine lecture, Geotechnique, Vol.17.
  8. Bjerrum, L. (1973), "Problems of soil mechanics and construction on soft clays and structurally unstable soils", General report, 8th ICSMFE, Vol.3, pp.111-159.
  9. Chung, S. G., Giao, P. H., Kim, G. J. and Leroueil, S. (2002), "Geotechnical properties of Pusan clay", Canadian geotechnical journal, Vol.39, pp.1050-1060. https://doi.org/10.1139/t02-055
  10. Chung, S. G., Kwag, J. M., Giao, P. H., Back, S. H. and Prasad, K. N. (2004), "A study of soil disturbance of Pusan clays with reference to drilling, sampling and extruding", Geotechnique, Vol.54, No.1, pp.61-65. https://doi.org/10.1680/geot.2004.54.1.61
  11. Chung, S. G. (2005), "Sampling techniques and their effects in characterizing of Pusan clay", Proceedings of international conference on civil and environmental engineering, ICCEE-2005, Higashi-Hiroshima, Hiroshima University, Japan.
  12. Chung, S. G., Jang, W. Y., Ninjgarav, E. and Ryu, C. K. (2006), "Compressibility characteristics associated with deposional environment of Pusan clay in the Nakdong River Estuary", Journal of Korean geotechnical society, Vol.22, No.12, pp. 57-65.
  13. Chung, S. G., Jang, W. Y. and Lee, J. M. (2010), "Correlations between CPT and FVT results for Busan clay", Marine georesources and geotechnology, Vol.28, No.1, pp.49-63. https://doi.org/10.1080/10641190903358649
  14. Chung, S. G., Ryu, C. K., Min, S. C., Lee, J. M., Hong, Y. P. and Odgerel, E. (2012), "Geotechnical characterization of Busan clay", KSCE Journal of civil engineering, Vo1.16, No.3, pp.341-350.
  15. Fukasawa, T., Mizukami, J. and Kusakabe, O. (2004), "Applicability of CPT for construction control of seawall on soft clay improved by sand drain method", Soils and Foundations, Vol.44, No.2, pp.127-138. https://doi.org/10.3208/sandf.44.2_127
  16. Hanzawa, H. and Adachi. K. (1983), "Overconsolidation of alluvial clays", Soils and Foundations, Vol.23, No.4, pp.106-118. https://doi.org/10.3208/sandf1972.23.4_106
  17. Jeong, S. G. (2015), "Mechanical characteristics of dredged and reclaimed ground with low plasticity from western coastal site", Journal of Korean Geosynthetics Society, Vol.14, No.4, pp.97-104. https://doi.org/10.12814/jkgss.2015.14.4.097
  18. Kim. J. H. (2017), "Evaluation on partially drained strength of silty soil with low plasticity using CPTU data", Journal of Korean Geosynthetics Society, Vol.16, No.2, pp.55-66.
  19. Leroulie, S., Tavenas, F., Mieussens, C. and Peignaud, M. (1978), "Construction pore pressures in clay foundations under embankments, part II: general behavior, Canadian geotechnical journal, Vol.15, No.1, pp.66-82. https://doi.org/10.1139/t78-006
  20. Leroulie, S. (1996), "Compressibility of clays:fundamental and practical aspects", ASCE Journal of geotechnical engineering, Vol.122, No.7, pp.534-543. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(534)
  21. Morin, P., Leroulie, S. and Samson, L. (1983), "Preconsolidation pressure of Champlain clays. part I : In-situ determination", Canadian geotechnical journal, Vol.20, No.4, pp.782-802. https://doi.org/10.1139/t83-083
  22. Ryu, C. K., Kang, S. R., Chung, S. G. and Jeon, Y. M. (2011), "Late quaternary depositional environmental change in the northern marginal area of the Nakdong River delta, Korea, Journal of the geological society of Korea, Vol.47, No.3, pp. 213-233.
  23. Tanaka. Y. and Sakagami, T. (1989), "Piezocone testing in underconsolidated clay", Canadian geotechnical journal, Vol.26, pp.563-567. https://doi.org/10.1139/t89-069
  24. Tanaka, H. and Tanaka, M. (1999), "Key factors governing sample quality", Proc. Int. Symp. on characterization of soft marine clays, Tsuchida and Nakase(eds), Yokosuka, Balkema, pp.57-82.
  25. Tanaka, H., Mishima, O., Tanaka, M., Park, S. Z., Jeong, G. H. and Locat, J. (2001), "Characterization of Yangsan clay, Pusan, Korea ", Soils and Foundations, Japanese geotechnical society, Vol.42, No.2, pp.89-104.