DOI QR코드

DOI QR Code

한천분해 미생물 Vibrio sp. GNUM08123의 동정 및 agarase 생산의 발효적 특성

Identification and Characterization of Agar-degrading Vibrio sp. GNUM08123 Isolated from Marine Red Macroalgae

  • 지원재 (국립생물자원관 유용자원분석과) ;
  • 김윤희 (명지대학교 생명과학정보학부) ;
  • 김종희 (서일대학교 식품영양과) ;
  • 홍순광 (명지대학교 생명과학정보학부)
  • Chi, Won-Jae (Biological and Genetic Resource Assessment Division, National Institute of Biological Resource) ;
  • Kim, Yoon Hee (Department of Biological Science, Myongji University) ;
  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil University) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 투고 : 2017.07.24
  • 심사 : 2017.08.24
  • 발행 : 2017.09.28

초록

An agar-degrading bacterium, designated as the GNUM08123 strain, was isolated from samples of red algae collected from the Yongil Bay near East Sea, Korea. The isolated GNUM08123 strain was gram-negative, aerobic, motile, and beige-pigmented, with $C_{16:0}$ (25.9%) and summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$, 34.4%) as its major cellular fatty acids. A similarity search based on the 16S rRNA gene sequence revealed that it belonged to class Gammaproteobacteria and shared 97.7% similarity with the type strain Vibrio chagasii $R-3712^T$. The DNA G+C content of strain $GNUM08123^T$ was 46.9 mol%. The major isoprenoid quinone was ubiquinone-8. The results of DNA-DNA relatedness and 16S rRNA sequence similarity analyses, in addition to its phenotypic and chemotaxonomic characteristics, suggest that strain GNUM08123 is a novel species within genus Vibrio, designated as Vibrio sp. GNUM08123. Agarase production by strain GNUM08123 was induced by agar and sucrose, but was repressed probably owing to carbon catabolite repression by glucose and maltose.

키워드

참고문헌

  1. Macian MC, Ludwig W, Schleifer KH, Pujalte MJ, Garay E. 2001. Vibrio agarivorans sp. nov, a novel agarolytic marine bacterium. Int. J. Syst. Evol. Microbiol. 51: 2031-2036. https://doi.org/10.1099/00207713-51-6-2031
  2. Usov AI. 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloid. 12: 301-308. https://doi.org/10.1016/S0268-005X(98)00018-6
  3. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
  4. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  5. Giordano A, Andreotti G, Tramice A, Trincone A. 2006. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol. J. 1: 511-530. https://doi.org/10.1002/biot.200500036
  6. Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Ncoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  7. Chen HM, Zheng L, Yan XJ. 2005. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol. Biotechnol. 43: 29-36.
  8. Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I. 2010. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci. Biotechnol. Biochem. 74: 766-770. https://doi.org/10.1271/bbb.90803
  9. Ji J, Wang LC, Wu H, Luan HM. 2011. Bio-function summary of marine oligosaccharides. Int. J. Biol. 3: 74-86.
  10. Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. 2017. Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar. Drugs 15: 90. https://doi.org/10.3390/md15040090
  11. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
  12. Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, Lim YW. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  13. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  14. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  15. Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  17. Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
  18. Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application note 228-241. Hewlett-Packard Co, Avondale, Pa.
  19. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE:MIDI Inc.
  20. Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  21. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J, Hoste B, et al. 2003. Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int. J. Syst. Evol. Microbiol. 53: 753-759. https://doi.org/10.1099/ijs.0.02490-0
  23. Thompson FL, Thompson CC, Hoste B, Vandemeulebroecke K, Gullian M, Swings J. 2003. Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int. J. Syst. Evol. Microbiol. 53: 1495-1501. https://doi.org/10.1099/ijs.0.02658-0
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464. https://doi.org/10.1099/00207713-37-4-463
  25. Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
  26. Miyazono K, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Tanokura M. 2012. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J. Bacteriol. 194: 607-616. https://doi.org/10.1128/JB.06173-11
  27. Romero-Rodriguez A, Ruiz-Villafan B, Tierrafria VH, Rodriguez-Sanoja R, Sanchez S. 2016. Carbon catabolite regulation of secondary metabolite formation and morphological differentiation in Streptomyces coelicolor. Appl. Biochem. Biotechnol. 180: 1152-1166. https://doi.org/10.1007/s12010-016-2158-9
  28. Lee CR, Chi WJ, Bae CH, Hong SK. 2015. Identification of a new agar-hydrolyzing bacterium Vibrio sp. S4 from the seawater of Jeju island and the biochemical characterization of thermostable agarose. Microbiol. Biotechnol. Lett. 43: 314-321. https://doi.org/10.4014/mbl.1510.10005