Study on the Visual Cells in the Retina of Macropodus ocellatus (Pisces, Osphronemidae) Freshwater Fish from Korea

한국산 담수어류 버들붕어, Macropodus ocellatus (Pisces, Osphronemidae) 망막의 시각세포에 관한 연구

  • Kim, Jae Goo (Faculty of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Chonbuk National University) ;
  • Park, Jong Yong (Faculty of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Chonbuk National University)
  • 김재구 (전북대학교 자연과학대학 생물학과, 전북대학교 생물다양성연구소) ;
  • 박종영 (전북대학교 자연과학대학 생물학과, 전북대학교 생물다양성연구소)
  • Received : 2017.09.08
  • Accepted : 2017.09.26
  • Published : 2017.09.30

Abstract

Using both light and scanning electron microscopies, it was investigated on the visual cells as well as the eyes of Macropodus ocellatus (Pisces, Osphronemidae). This species had a circular lens and yellowish cornea. The eyes had $3.5{\pm}0.2mm$ which is $31.1{\pm}3.0%$ in a percentage of eye diameter relative to head length. The retina ($158.2{\pm}10.6{\mu}m$) was built of several layers, including the visual cell layer which consists of three types of cells: single cons ($27.8{\pm}1.6{\mu}m$) and equal double cone ($33.9{\pm}3.7{\mu}m$), and large rods ($57.3{\pm}1.3{\mu}m$). The visual cell layer then was classified into the correct pattern. All visual cells were clearly distinguished from two parts (inner and outer segments). The elongated rod cells were extend to the bottom of the retinal pigment epithelium. In scanning electron microscopy, the outer segment links to inner segment by so-called calyceal piles. The M. ocellatus single and double cones appearance form a flower-petal arrangement, which is a regular mosaic pattern that contains quadrilateral units by four double cones surrounding a single cone.

한국산 담수어류 버들붕어의 눈을 관찰하고 시각을 담당하는 망막의 시각세포 구조를 광학현미경과 주사전자현미경을 이용하여 조사하였다. 버들붕어는 구형의 수정체를 보유하고 있었으며, 각막은 노란색으로 확인하였다. 눈은 $3.5{\pm}0.2mm$의 크기였으며 두장/안경비는 $31.1{\pm}5.0$으로 비교적 큰 눈을 가지고 있었다. 버들붕어의 망막은 $158.2{\pm}10.6{\mu}m$의 두께였으며 시각세포층에는 간상세포 ($57.3{\pm}1.3$), 동형 이중원추세포($33.9{\pm}3.7$) 및 단일원추세포($27.8{\pm}1.6$)로 구성되어 있었으며 횡단면을 확인한 결과 정방형의 모자이크 모델을 보유하고 있었다. 모든 시각세포는 내절과 외절의 구분이 뚜렷하였으며 간상세포가 원추세포보다 더 길어 원추세포들의 외절과 외절사이에 간상세포의 내절이 존재하였다. 간상세포의 외절은 망막 색소상피층 아래까지 신장되어 있었다. 전자현미경을 통해 미세구조를 확인한 결과 원추세포와 간상세포 모두 내절과 외절을 연결하는 배상극이 관찰되었으며 간상세포 및 동형 이중원추세포의 형태가 뚜렷하게 구분되었다. 시각세포의 횡단면을 관찰한 결과 짧은 단일원추세포를 기준으로 상하좌우에 동형 이중원추세포가 정방형 배열을 하고 있었다.

Keywords

References

  1. Aparicio, S.R. and P. Marsden. 1969. Application of standard micro- anatomical staining methods to epoxy resin-embedded sections. J. Clin. Path., 22: 589-592. https://doi.org/10.1136/jcp.22.5.589
  2. Audesirk, G., T. Audesirk and B.E. Byers. 2008. Biology: Life on earth 8th edition. Prentice Hall, New Jersey, pp. 817-831.
  3. Collins, B.A. and E.F. MacNichol. 1978. Triple cones found in retinas of 3 fish species. Cell. Mol. Life Sci., 35: 106-108.
  4. Donatti, L. and E. Fanta. 2007. Fine structure of the retinal pigment epithelium and cone of Antarctic fish Notohenia coriiceps Richardson in light and dark-conditions. Rev. Bras. Zool., 24: 33-40. https://doi.org/10.1590/S0101-81752007000100004
  5. Fernald, R.D. 1985. Growth of the teleost eye: novel solutions to complex constraints. Environ. Biol. Fish., 13: 113-123. https://doi.org/10.1007/BF00002579
  6. Fernald, R.D. 1988. Aquatic adaptations in fish eyes. In: Atema, J., R.R. Fay, A.N. Popper and W.N. Tavolga (eds.), Sensory Biology of Aquatic Animals. Springer Verlag, New York, pp. 435-466.
  7. Frank, R., R.M. Roland and S. Ulrich. 2001. Outer retinal fine structure of the garfish Belone belone (L.) (Belonidae, Teleostei) during light and dark adaptation-photoreceptors, cone patterns and densities. Acta Zool., 82: 89-105.
  8. George, C.K. and K.C. Robert. 2001. Comparative anatomy of vertebrates. McGraw Hill, New York, pp. 387-454.
  9. Hagedorn, M., A.F. Mack, B. Evans and R.D. Fernald. 1998. The embryogenesis of rod photoreceptors in the teleost fish retina, Haplochromis burtoni. Dev. Brain Res., 108: 217-227. https://doi.org/10.1016/S0165-3806(98)00051-0
  10. Hirt, B. and H.J. Wagner. 2005. The organization of the inner retina in a pure-rod deep-sea fish. Brain Behav. Evolut., 65: 157-167. https://doi.org/10.1159/000083625
  11. Kim, I.S. 1997. Illustrated Encyclopedia of Fauna & Flora of Korea, Vol. 37, Freshwater Fishes. Ministry of Education, 629pp. (in Korean)
  12. Kim, I.S. and J.Y. Park. 2002. Freshwater fishes of Korea. Kyohak Publishing, Seoul, 467pp. (in Korean)
  13. Kim, J.G., J.Y. Park and C.H. Kim. 2014. Visual cells in the retina of the aucha perch Coreoperca herzi Herzenstein, 1896 (Pisces; Centropomidae) of Korea. J. Appl. Ichthyol., 30: 172-174. https://doi.org/10.1111/jai.12311
  14. Kim, J.G. and J.Y. Park. 2015. Visual cells in the retina of Iksookimia longicorpa (Pisces; Cobitidae) of Korea. Korean J. Ichthyol., 27: 257-262. (in Korean)
  15. Kim, J.G. and J.Y. Park. 2016a. A comparative study on the visual cells in two Korean bittering fishes. Korean J. Ichthyol., 28: 67-71. (in Korean)
  16. Kim, J.G. and J.Y. Park. 2016b. Visual cells of the introduced bluegill Lepomis macrochirus (Pisces; Centropomidae) of Korea. Applied Microscopy, 46: 89-92. https://doi.org/10.9729/AM.2016.46.2.89
  17. Kim, J.G. and J.Y. Park. 2017. Morphological characteristics of visual cells in the endemic Korean loach Kichulchoia multifasciata (Pisces; Cobitidae) by microscopy. Folia Morphol., 76: 186-190. https://doi.org/10.5603/FM.a2016.0072
  18. Lyall, A.H. 1956. Occurrence of triple and quadruple cones in the retina of the minnow (Phoxinus laevis). Nature, 177: 1086-1087. https://doi.org/10.1038/1771086a0
  19. Lyall, A.H. 1957. Cone arrangements in teleost retinae. Quart. J. Micr. Sci., 98: 189-201.
  20. Marc, R.E. and H.G. Sperling. 1976. The chromatic organization of the goldfish cone mosaic. Vision Res., 16: 1211-1224. https://doi.org/10.1016/0042-6989(76)90044-4
  21. Meer, H.J. van der. 1992. Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor., 40: 51-85. https://doi.org/10.1007/BF00046551
  22. Monica, R.L. 2001. Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae). Environ. Biol. Fish., 62: 365-378.
  23. Nag, T.C. and J. Bhattacharjee. 2002. Retinal cytoarchitecture in some mountain-stream teleosts of India. Environ. Biol. Fish., 63: 435-449. https://doi.org/10.1023/A:1014982218347
  24. Nicol, J.A.C. 1989. The eyes of fishes. Clarendon Press, Oxford, pp. 82-142.
  25. Peter, B.M. and J.C.J. Joseph. 1996. Fishes: an introduction to ichthyology. Prentice Hall, New Jersey, pp. 152-156.
  26. Polyak, S. 1957. The vertebrate visual system. University of Chicago Press, Chicago, pp. 1-178.
  27. Rossetto, E.S., H. Dolder and I. Sazima. 1992. Doble cone mosaic pattern in the retina of larval and adult piranha, Serrasalmus spilopleura. Experientia, 48: 597-599. https://doi.org/10.1007/BF01920245
  28. Sahly, I., E. Dufour, S. Cataldo, M. Vincent, B. Amel, P. Isabelle, P. Elise, E. Amrit, C. Diane, A. Asadollah, E. Inga, L. Andrea, I. Maria, H. Jean-Pierre, W. Dominique, S. Jose-Alain, E.A. Aziz and P. Christine. 2012. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. J. Cell. Biol., 199: 381-399. https://doi.org/10.1083/jcb.201202012
  29. Thomas, J.L. and W.H. Craig. 2010. Ocular dimensions and cone photoreceptor topography in adult Nile tilapia Oreochromis niloticus. Environ. Biol. Fish., 88: 369-376. https://doi.org/10.1007/s10641-010-9652-7
  30. You, M.J. and J.Y. Park. 2008. Comparative study of the retinal structure in two Korean endemic freshwater fishes, Zacco koreanus (Cyprinidae) and Pseudobagrus koreanus (Bagridae) based on their habitats. Korean J. Ichthyol., 20: 97-104. (in Korean)
  31. Yuko, N., O. Tadashi, T. Fumio and M. Toshiteru. 1997. Three-dimensional reconstitution of cone arrangement on the spherical surface of the retina in the medaka eyes. Zool. Sci., 14: 795-801. https://doi.org/10.2108/zsj.14.795
  32. Yvette, W.K. 1980. Cone mosaics in a teleost retina: Changes during light and dark adaptation. Experientia, 36: 1371-1374. https://doi.org/10.1007/BF01960104