East Asian Math. J.
Vol. 33 (2017), No. 5, pp. 543-557
http://dx.doi.org/10.7858/eamj.2017.038

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Abstract

Jin [10] studied lightlike hypersurfaces of an indefinite transSasakian manifold with a quarter-symmetric metric connection. We study further the geometry of this subject. The object of this paper is to study the geometry of half lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

1. Introduction

A linear connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be a quarter-symmetric connection if its torsion tensor \bar{T} satisfies

$$
\begin{equation*}
\bar{T}(\bar{X}, \bar{Y})=\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y} \tag{1.1}
\end{equation*}
$$

where J is a $(1,1)$-type tensor field and θ is a 1 -form associated with a smooth vector field ζ by $\theta(X)=\bar{g}(X, \zeta)$. Moreover, if this connection $\bar{\nabla}$ is metric, i.e., $\bar{\nabla} \bar{g}=0$, then $\bar{\nabla}$ is called a quarter-symmetric metric connection. The notion of quarter-symmetric metric connection was introduced by Yano-Imai [14]. The geometry of lightlike hypersurface of an indefinite trans-Sasakian manifolds with a quarter-symmetric metric connection was studied by Jin [10]. Throughout this paper, denote by \bar{X}, \bar{Y} and \bar{Z} the smooth vector fields on \bar{M}.

Let M be a submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) of codimension 2 with the tangent bundle $T M$ and the normal bundle $T M^{\perp}$. Denoted by $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ the radical distribution. Then M is called
(1) half lightlike submanifold if $\operatorname{rank}\{\operatorname{Rad}(T M)\}=1$,
(2) coisotropic submanifold if $\operatorname{rank}\{\operatorname{Rad}(T M)\}=2$.

Half lightlike submanifold was introduced by Duggal-Bejancu [4] and later, studied by Duggal-Jin [5]. Its geometry is more general than that of lightlike hypersurface or coisotropic submanifold. Much of its theory will be immediately generalized in a formal way to general lightlike submanifolds.

[^0]The notion of trans-Sasakian manifold, of type (α, β), was introduced by Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of trans-Sasakian manifold such that

$$
\alpha=1, \quad \beta=0 ; \quad \alpha=0, \quad \beta=1 ; \quad \alpha=\beta=0
$$

respectively. We say that a trans-Sasakian manifold \bar{M} is an indefinite transSasakian manifold if \bar{M} is a semi-Riemannian manifold.

In this paper, we study half lightlike submanifolds of an indefinite transSasakian manifold $\bar{M} \equiv(\bar{M}, J, \zeta, \theta, \bar{g})$ with a quarter-symmetric metric connection, in which the tensor field J and the 1-form θ, defined by (1.1), are identical with the structure tensor field J and the structure 1-form θ of the indefinite trans-Sasakian structure $(J, \theta, \zeta, \bar{g})$ on \bar{M}, respectively.
Remark 1. Denote by $\widetilde{\nabla}$ the Levi-Civita connection of \bar{M} with respect to the semi-Riemannian metric \bar{g}. Due to [9], it is known that a linear connection $\bar{\nabla}$ on \bar{M} is a quarter-symmetric metric connection if and only if $\bar{\nabla}$ satisfies

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\widetilde{\nabla}_{\bar{X}} \bar{Y}-\theta(\bar{X}) J \bar{Y} \tag{1.2}
\end{equation*}
$$

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite trans-Sasakian manifold if there exist a structure set $\{J, \zeta, \theta, \bar{g}\}$, a Levi-Civita connection $\widetilde{\nabla}$ and two smooth functions α and β, where J is a $(1,1)$-type tensor field, ζ is a vector field, and θ is a 1 -form such that

$$
\begin{gather*}
J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \quad \theta(\zeta)=1, \quad \theta(\bar{X})=\epsilon \bar{g}(\bar{X}, \zeta) \\
\theta \circ J=0, \quad \bar{g}(J \bar{X}, J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\epsilon \theta(\bar{X}) \theta(\bar{Y}) \tag{2.1}\\
\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) \bar{X}\} \\
+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) J \bar{X}\}
\end{gather*}
$$

where ϵ denotes $\epsilon=1$ or -1 according as ζ is spacelike or timelike, respectively. $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).

In the entire discussion of this paper, we shall assume that the structure vector field ζ is a spacelike one, i.e., $\epsilon=1$, without loss of generality.

Replacing the Levi-Civita connection $\widetilde{\nabla}$ by the quarter-symmetric metric connection $\bar{\nabla}$ given by (1.2), the last equation of (2.1) is reduced to

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) J \bar{X}\} \tag{2.2}
\end{equation*}
$$

Replacing Y by ζ to (2.2) and using $J \zeta=0$ and $\theta\left(\bar{\nabla}_{X} \zeta\right)=0$, we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \zeta=-\alpha J X+\beta(X-\theta(X) \zeta) \tag{2.3}
\end{equation*}
$$

Let (M, g) be a half lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M} equipped with the radical distribution $\operatorname{Rad}(T M)$, a screen distribution $S(T M)$ and a coscreen distribution $S\left(T M^{\perp}\right)$ such that

$$
T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), \quad T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_{i}$ the i-th equation of the six equations in (2.1). We use the same notations for any others. Let ξ be a section of $\operatorname{Rad}(T M)$. Assume that L is a unit spacelike basis vector field of $S\left(T M^{\perp}\right)$, without loss of generality. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \bar{M}$. Certainly ξ and L belong to $\Gamma\left(S(T M)^{\perp}\right)$. Thus we have

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{\text {orth }} S\left(T M^{\perp}\right)^{\perp}
$$

where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. It is known [5] that, for any null section ξ of $\operatorname{Rad}(T M)$, there exists a uniquely defined null vector field $N \in \Gamma\left(S\left(T M^{\perp}\right)^{\perp}\right)$ satisfying

$$
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=\bar{g}(N, L)=0, \forall X \in \Gamma(S(T M)) .
$$

Denote by $l \operatorname{tr}(T M)$ the vector subbundle of $S\left(T M^{\perp}\right)^{\perp}$ locally spanned by N. Then we show that $S\left(T M^{\perp}\right)^{\perp}=\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)$. We call $N, \operatorname{ltr}(T M)$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l t r(T M)$ the null transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution $S(T M)$, respectively.

Denote by X, Y and Z the vector fields on M, unless otherwise specified. As the tangent bundle $T \bar{M}$ of the ambient manifold \bar{M} is satisfied

$$
T \bar{M}=T M \oplus \operatorname{tr}(T M)=T M \oplus \operatorname{ltr}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

the Gauss and Weingarten formulae of M are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \tag{2.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L \tag{2.5}\\
& \bar{\nabla}_{X} L=-A_{L} X+\lambda(X) N, \tag{2.6}
\end{align*}
$$

where ∇ is the linear connection on M, B and D are the local second fundamental forms of M, A_{N} and A_{L} are the shape operators, and τ, ρ and λ are 1-forms on $T M$. Let P be the projection morphism of $T M$ on $S(T M)$ and η a 1-form such that $\eta(X)=\bar{g}(X, N)$. As $T M=S(T M) \oplus_{\text {orth }} \operatorname{Rad}(T M)$, the Gauss and Weingarten formulae of $S(T M)$ are given respectively by

$$
\begin{align*}
\nabla_{X} P Y & =\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.7}\\
\nabla_{X} \xi & =-A_{\xi}^{*} X-\tau(X) \xi \tag{2.8}
\end{align*}
$$

where ∇^{*} is the linear connection on $S(T M), C$ is the local screen second fundamental form of $S(T M), A_{\xi}^{*}$ is the shape operator.

From the facts that $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, L\right)$, we show that B and D are independent of the choice of $S(T M)$ and satisfy

$$
\begin{equation*}
B(X, \xi)=0, \quad D(X, \xi)=-\lambda(X) \tag{2.9}
\end{equation*}
$$

The local second fundamental forms are related to their shape operators by

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \\
D(X, Y)=g\left(A_{L} X, Y\right)-\lambda(X) \eta(Y), & \bar{g}\left(A_{L} X, N\right)=\rho(X) . \tag{2.12}
\end{array}
$$

3. Structure equations on M

Cǎlin [2] proved that if ζ is tangent to M, then it belongs to $S(T M)$ which we assume. It is known [7] that, for any half lightlike submanifold M of an indefinite trans-Sasakian manifold $\bar{M}, J(\operatorname{Rad}(T M)), J(l \operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are vector subbundles of $S(T M)$, of rank 1. There exist two non-degenerate almost complex distributions H_{o} and H with respect to J such that

$$
\begin{gathered}
S(T M)=\{J(\operatorname{Rad}(T M)) \oplus J(l \operatorname{tr}(T M))\} \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }} H_{o}, \\
\\
H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o},
\end{gathered}
$$

In this case, the tangent bundle $T M$ is decomposed as follow:

$$
\begin{equation*}
T M=H \oplus J(l \operatorname{tr}(T M)) \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \tag{3.1}
\end{equation*}
$$

Consider two local null vector fields U and V, a local unit spacelike vector field W on $S(T M)$, and their 1-forms u, v and w defined by

$$
\begin{array}{ccc}
U=-J N, & V=-J \xi, & W=-J L \\
u(X)=g(X, V), & v(X)=g(X, U), & w(X)=g(X, W) \tag{3.3}
\end{array}
$$

Let S be the projection morphism of $T M$ on H and F the tensor field of type $(1,1)$ globally defined on M by $F=J \circ S$. Then $J X$ is expressed as

$$
\begin{equation*}
J X=F X+u(X) N+w(X) L \tag{3.4}
\end{equation*}
$$

Applying J to (3.4) and using (2.1) and (3.2), we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+w(X) W+\theta(X) \zeta \tag{3.5}
\end{equation*}
$$

In the following, we say that F is the structure tensor field of M.
Substituting (3.4) into (2.3) and using (2.4), we see that

$$
\begin{gather*}
\nabla_{X} \zeta=-\alpha F X+\beta(X-\theta(X) \zeta) \tag{3.6}\\
B(X, \zeta)=-\alpha u(X), \quad D(X, \zeta)=-\alpha w(X) \tag{3.7}
\end{gather*}
$$

Applying $\bar{\nabla}_{X}$ to $\bar{g}(\zeta, N)=0$ and using (2.3), (2.5) and (2.11), we have

$$
\begin{equation*}
C(X, \zeta)=-\alpha v(X)+\beta \eta(X) \tag{3.8}
\end{equation*}
$$

Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent, lightlike transversal and co-screen components, we obtain

$$
\begin{align*}
& T(X, Y)=\theta(Y) F X-\theta(X) F Y \tag{3.9}\\
& B(X, Y)-B(Y, X)=\theta(Y) u(X)-\theta(X) u(Y) \tag{3.10}\\
& D(X, Y)-D(Y, X)=\theta(Y) w(X)-\theta(X) w(Y) \tag{3.11}
\end{align*}
$$

where T is the torsion tensor with respect to ∇. From (3.10) and (3.11), we see that B and D are never symmetric. Replacing Y by ξ to (2.10) and using $(2.9)_{1},(3.10)$ and the fact that $S(T M)$ is non-degenerate, we obtain

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 . \tag{3.12}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to (3.2) ~ (3.4) by turns and using (2.4), (2.5), (2.6), (2.9) ~ (2.10), (2.12) and (3.2) ~ (3.4), we have

$$
\begin{align*}
& B(X, U)= C(X, V), B(X, W)=D(X, V), C(X, W)=D(X, U) \tag{3.13}\\
& \nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U+\rho(X) W-\{\alpha \eta(X)+\beta v(X)\} \zeta \tag{3.14}\\
& \nabla_{X} V= F\left(A_{\xi}^{*} X\right)-\tau(X) V-\lambda(X) W-\beta u(X) \zeta, \tag{3.15}\\
& \nabla_{X} W= F\left(A_{L} X\right)+\lambda(X) U-\beta w(X) \zeta, \tag{3.16}\\
&\left(\nabla_{X} F\right)(Y)= u(Y) A_{N} X+w(Y) A_{L} X-B(X, Y) U-D(X, Y) W \tag{3.17}\\
&+\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}, \\
&\left(\nabla_{X} u\right)(Y)=-u(Y) \tau(X)-w(Y) \lambda(X)-\beta \theta(Y) u(X)-B(X, F Y), \tag{3.18}\\
&\left(\nabla_{X} v\right)(Y)= v(Y) \tau(X)+w(Y) \rho(X)-\theta(Y)\{\alpha \eta(X)+\beta v(X)\} \tag{3.19}\\
& \quad-g\left(A_{N} X, F Y\right) .
\end{align*}
$$

4. Recurrent and Lie recurrent structure tensors

Definition 1. The structure tensor field F of M is said to be recurrent [8] if there exists a smooth 1 -form ϖ on M such that

$$
\left(\nabla_{X} F\right) Y=\varpi(X) F Y
$$

Definition 2. A half lightlike submanifold M of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be statical [6] if $\bar{\nabla}_{X} L \in \Gamma(S(T M))$ for any $X \in \Gamma(T M)$.

Remark 2. From (2.6) and $(2.12)_{2}$, we show that Definition 2 is equivalent to the conditions: $\lambda=0$ and $\rho=0$. The condition $\lambda=0$ is equivalent to the conception: M is irrotational, i.e., $\bar{\nabla}_{X} \xi \in \Gamma(T M)$ [12]. The condition $\rho=0$ is equivalent to the conception: M is solenoidal, i.e., $A_{L} X \in \Gamma(S(T M))$ [11].

Theorem 4.1. Let M be a half lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a quarter-symmetric metric connection. If F is recurrent, then the following six statements are satisfied:
(1) F is parallel with respect to the induced connection ∇ on M,
(2) \bar{M} is an indefinite cosymplectic manifold, i.e., $\alpha=\beta=0$,
(3) M is statical, i.e., $\lambda=0$ and $\rho=0$,
(4) W is parallel vector field with respect to the connection ∇,
(5) $H, J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are parallel distributions on M,
(6) M is locally a product manifold $\mathcal{C}_{U} \times \mathcal{C}_{W} \times M^{\sharp}$, where \mathcal{C}_{U} is a null curve tangent to $J(\operatorname{ltr}(T M)), \mathcal{C}_{W}$ is a spacelike curve tangent to $J\left(S\left(T M^{\perp}\right)\right)$, and M^{\sharp} is a leaf of the distributions H.

Proof. Denote by μ, ν and σ the 1-forms on M such that

$$
\begin{aligned}
& \mu(X)=B(X, U)=C(X, V), \quad \sigma(X)=D(X, W), \\
& \nu(X)=B(X, W)=D(X, V) .
\end{aligned}
$$

(1) As F is recurrent, from the above definition and (3.17), we get

$$
\begin{align*}
\varpi(X) F Y & =u(Y) A_{N} X+w(Y) A_{L} X-B(X, Y) U-D(X, Y) W \tag{4.1}\\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}
\end{align*}
$$

Replacing Y by ξ and using (2.9) and the fact that $F \xi=-V$, we get

$$
\begin{equation*}
-\varpi(X) V=\lambda(X) W+\beta u(X) \zeta \tag{4.2}
\end{equation*}
$$

Taking the scalar product with U to (4.2), we obtain $\varpi=0$. Thus F is parallel with respect to the connection ∇.
(2) Taking the scalar product with ζ to (4.2), we get $\beta=0$. Taking the scalar product with U to (4.1) satisfying $\varpi=\beta=0$, we get

$$
\begin{equation*}
u(Y) g\left(A_{N} X, U\right)+w(Y) g\left(A_{L} X, U\right)-\alpha \theta(Y) v(X)=0 \tag{4.3}
\end{equation*}
$$

Replacing Y by ζ to this equation, we have $\alpha=0$. As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold.
(3) Taking the scalar product with W to (4.2) and with N to (4.1), we have

$$
\begin{equation*}
\lambda(X)=0, \quad \rho(X)=\bar{g}\left(A_{L} X, N\right)=0 . \tag{4.4}
\end{equation*}
$$

As $\lambda=0, M$ is irrotational. As $\rho=0, M$ is solenoidal. Thus M is statical.
(4) Taking $Y=U$ and $Y=W$ to (4.3) by turns, we have

$$
\begin{equation*}
g\left(A_{N} X, U\right)=C(X, U)=0, \quad g\left(A_{L} X, U\right)=0 \tag{4.5}
\end{equation*}
$$

Taking the scalar product with V and W to (4.1) by turns, we have

$$
\begin{equation*}
B(X, Y)=u(Y) \mu(X)+w(Y) \nu(X), \quad D(X, Y)=w(Y) \sigma(X) \tag{4.6}
\end{equation*}
$$

due to (4.5) ${ }_{2}$. Replacing Y by V to the two equations of (4.6), we have

$$
\begin{equation*}
B(X, V)=0, \quad \nu(X)=B(X, W)=D(X, V)=0 \tag{4.7}
\end{equation*}
$$

Taking $Y=U$ and $Y=W$ to (4.1) and using (4.5) $)_{2}$ and (4.7) $)_{2}$, we get

$$
\begin{equation*}
A_{N} X=\mu(X) U, \quad A_{L} X=\sigma(X) W \tag{4.8}
\end{equation*}
$$

Using (4.7) ${ }_{2}$ and the fact that $S(T M)$ is non-degenerate, (4.6) ${ }_{1}$ reduces

$$
\begin{equation*}
A_{\xi}^{*} X=\mu(X) V \tag{4.9}
\end{equation*}
$$

Substituting (4.8) $)_{1}$ into (3.14) and (4.8) $)_{2}$ into (3.16), and using the facts that $\lambda=\rho=\alpha=\beta=0$ and $F U=F W=0$, we have

$$
\begin{equation*}
\nabla_{X} U=\tau(X) U, \quad \nabla_{X} W=0 \tag{4.10}
\end{equation*}
$$

From $(4.10)_{2}$, we see that W is parallel vector field with respect to ∇.
(5) From (4.10), we see that both $J(l \operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are parallel distributions on M with respect to the connection ∇, that is,

$$
\nabla_{X} U \in \Gamma(J(l \operatorname{tr}(T M))), \quad \nabla_{X} W \in \Gamma\left(J\left(S\left(T M^{\perp}\right)\right)\right)
$$

On the other hand, taking $Y \in \Gamma(H)$ to (4.1), we have

$$
\begin{equation*}
B(X, Y)=0, \quad D(X, Y)=0, \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H) \tag{4.11}
\end{equation*}
$$

By straightforward calculations from (2.8), (2.10), (3.4), (3.15), (3.16), (4.7), (4.11) and the facts that $\lambda=0$ and $F Z \in \Gamma\left(H_{o}\right)$ for $Z \in \Gamma\left(H_{o}\right)$, we have

$$
\begin{array}{lr}
g\left(\nabla_{X} \xi, V\right)=-B(X, V)=0, & g\left(\nabla_{X} \xi, W\right)=-\nu(X)=0 \\
g\left(\nabla_{X} V, V\right)=0, & g\left(\nabla_{X} V, W\right)=-\lambda(X)=0 \\
g\left(\nabla_{X} Z, V\right)=B(X, F Z)=0, & g\left(\nabla_{X} Z, W\right)=D(X, F Z)=0
\end{array}
$$

for all $X \in \Gamma(T M)$ and $Z \in \Gamma\left(H_{o}\right)$, or equivalently, we get

$$
\nabla_{X} Y \in \Gamma(H), \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H)
$$

Thus H is a parallel distribution on M with respect to ∇.
(6) As $J(\operatorname{ltr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H are parallel distributions and satisfed (3.1), by the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_{U} \times \mathcal{C}_{W} \times M^{\sharp}$, where \mathcal{C}_{U} is a null curve tangent to $J(l \operatorname{tr}(T M)), \mathcal{C}_{W}$ is a spacelike curve tangent to $J\left(S\left(T M^{\perp}\right)\right)$, and M^{\sharp} is a leaf of H.

Definition 3. The structure tensor field F of M is said to be Lie recurrent [8] if there exists a smooth 1-form ϑ on M such that

$$
\left(\mathcal{L}_{X} F\right) Y=\vartheta(X) F Y
$$

where \mathcal{L}_{X} denotes the Lie derivative on M with respect to X. The structure tensor field F is called Lie parallel if $\mathcal{L}_{X} F=0$.

Theorem 4.2. Let M be a half lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a quarter-symmetric metric connection. If F is Lie recurrent, then the following four statements are satisfied:
(1) F is Lie parallel,
(2) $\alpha=0$, i.e., \bar{M} is not an indefinite Sasakian manifold,
(3) the 1 -forms θ and τ satisfy $d \theta=0$ and $\tau=-\beta \theta$ on M,
(4) the shape operator A_{ξ}^{*} satisfies

$$
A_{\xi}^{*} V=0, \quad A_{\xi}^{*} U=0
$$

Proof. (1) As $\left(\mathcal{L}_{X} F\right) Y=[X, F Y]-F[X, Y]$, using (3.9) and (3.17), we get

$$
\begin{align*}
\vartheta(X) F Y= & -\nabla_{F Y} X+F \nabla_{Y} X-\theta(Y)\{X-\theta(X) \zeta\} \tag{4.12}\\
& +u(Y) A_{N} X+w(Y) A_{L} X \\
& -\{B(X, Y)-\theta(Y) u(X)\} U-\{D(X, Y)-\theta(Y) w(X)\} W \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}
\end{align*}
$$

by (3.5). Taking $Y=\xi$ to this equation and using (2.9), we have

$$
\begin{equation*}
-\vartheta(X) V=\nabla_{V} X+F \nabla_{\xi} X+\lambda(X) W+\beta u(X) \zeta \tag{4.13}
\end{equation*}
$$

Taking the scalar product with V, W and ζ to (4.13) by turns, we have

$$
\begin{equation*}
u\left(\nabla_{V} X\right)=0, \quad w\left(\nabla_{V} X\right)=-\lambda(X), \quad \theta\left(\nabla_{V} X\right)=-\beta u(X) \tag{4.14}
\end{equation*}
$$

Replacing Y by V to (4.12) and using the fact that $\theta(V)=0$, we have

$$
\begin{equation*}
\vartheta(X) \xi=-\nabla_{\xi} X+F \nabla_{V} X-B(X, V) U-D(X, V) W+\alpha u(X) \zeta \tag{4.15}
\end{equation*}
$$

Applying F to this equation and using (3.5) and (4.14), we obtain

$$
\vartheta(X) V=\nabla_{V} X+F \nabla_{\xi} X+\lambda(X) W+\beta u(X) \zeta
$$

Comparing this equation with (4.13), we get $\vartheta=0$. Thus F is Lie parallel.
(2) Taking the scalar product with ζ to (4.15) with $\vartheta=0$, we have

$$
g\left(\nabla_{\xi} X, \zeta\right)=\alpha u(X)
$$

Replacing X by U to this equation and using (3.14), we obtain $\alpha=0$.
(3) Applying $\bar{\nabla}_{\bar{X}}$ to $\theta(\bar{Y})=\bar{g}(\bar{Y}, \zeta)$ and using (1.1) and (2.3), we obtain

$$
d \theta(\bar{X}, \bar{Y})=\alpha \bar{g}(\bar{X}, J \bar{Y})
$$

due to the fact $\bar{\nabla}$ is metric. As $\alpha=0$, we see that $d \theta=0$.
Taking $X=W$ to (4.12) and using (2.12), (3.5), (3.10) and (3.11), we get

$$
\begin{gather*}
u(Y) A_{N} W+w(Y) A_{L} W-A_{L} Y-F\left(A_{L} F Y\right) \tag{4.16}\\
\quad-\lambda(F Y) U-\theta(Y) W=0
\end{gather*}
$$

Taking the scalar product with N and using $(2.11)_{2}$ and $(2.12)_{1,2}$, we have

$$
\begin{equation*}
D(F Y, U)=w(Y) \rho(W)-\rho(Y) \tag{4.17}
\end{equation*}
$$

Replacing Y by V and using $(2.9)_{2}$, we get $\rho(V)=\lambda(U)$, while taking $X=U$ to $(4.14)_{2}$ and using (3.14), we have $\rho(V)=-\lambda(U)$. Thus, $\rho(V)=\lambda(U)=0$. Taking $Y=\xi$ to (4.16), we have $A_{L} \xi=F\left(A_{L} V\right)+\lambda(V) U$. Multiplying this by V and using $(2.9),(2.12)$ and (3.11), we get $\lambda(V)=0$. Therefore,

$$
\begin{equation*}
\rho(V)=0, \quad \lambda(U)=0, \quad \lambda(V)=0 \tag{4.18}
\end{equation*}
$$

Taking the scalar product with N to (4.12) and using (2.12) 2 , we have

$$
\begin{gather*}
-\bar{g}\left(\nabla_{F Y} X, N\right)+g\left(\nabla_{Y} X, U\right)+w(Y) \rho(X) \tag{4.19}\\
-\theta(Y)\{\eta(X)+\beta v(X)\}=0
\end{gather*}
$$

Replacing X by ξ to (4.19) and using (2.8) and $(2.10)_{1,2}$, we have

$$
\begin{equation*}
B(X, U)+\theta(X)-w(X) \rho(\xi)=\tau(F X) \tag{4.20}
\end{equation*}
$$

Replacing X by U and using $(3.13)_{1}$ and the fact that $F U=0$, we get

$$
\begin{equation*}
C(U, V)=B(U, U)=0 \tag{4.21}
\end{equation*}
$$

Replacing X by V to (4.19) and using (2.10), (3.15) and $\rho(V)=0$, we have

$$
B(F X, U)+\tau(X)+\beta \theta(X)=0
$$

Taking $X=U, X=W$ and $X=\zeta$ to this equation by turns, we get

$$
\begin{equation*}
\tau(U)=0, \quad \tau(W)=0, \quad \tau(\zeta)=-\beta \tag{4.22}
\end{equation*}
$$

Replacing Y by ξ to (4.17) and using (3.11), we obtain

$$
\begin{equation*}
D(U, V)=\rho(\xi) \tag{4.23}
\end{equation*}
$$

Taking $X=U$ to (4.12) and using (2.11), (3.5) and (3.10) $\sim(3.14)$, we get

$$
\begin{align*}
& u(Y) A_{N} U+w(Y) A_{L} U-\theta(Y) U \tag{4.24}\\
& -F\left(A_{N} F Y\right)-A_{N} Y-\tau(F Y) U-\rho(F Y) W=0
\end{align*}
$$

Taking the scalar product with V and using (3.13), (4.21) and (4.23), we get

$$
B(X, U)+\theta(X)-w(X) \rho(\xi)=-\tau(F X)
$$

Comparing this equation with (4.20), we obtain $\tau(F X)=0$. Replacing X by $F Y$ and using (3.5) and (4.22), we have $\tau=-\beta \theta$ on M.
(4) Replacing Y by W to (4.24) and using $F W=0$, we have $A_{L} U=A_{N} W$. Taking the scalar product with U and using $(3.13)_{3}$, we have

$$
C(W, U)=C(U, W)
$$

Taking the scalar product with W to (4.24), we have

$$
\rho(F Y)=-C(Y, W)+u(Y) C(U, W)+w(Y) D(U, W)
$$

Taking the scalar product with U to (4.16) and using $(3.13)_{3}$, we have

$$
\rho(F Y)=C(Y, W)-u(Y) C(U, W)-w(Y) D(U, W)
$$

From the last two equations, we obtain $\rho(F Y)=0$. It follows that $\rho(\xi)=0$.
As $\tau(X)=\beta \theta(X)$, we have $\tau(V)=\tau(\xi)=0$. Taking $X=\xi$ to (4.13) and using (3.12), we obtain $A_{\xi}^{*} V=0$. From (3.10) and (4.20), we have $B(U, X)=0$, i.e., $g\left(A_{\xi}^{*} U, X\right)=0$. As $S(T M)$ is non-degenerate, we obtain $A_{\xi}^{*} U=0$.

5. Indefinite generalized Sasakian space forms

Definition 4. An indefinite trans-Sasakian manifold ($\bar{M}, J, \zeta, \theta, \bar{g}$) is called an indefinite generalized Sasakian space form, denote it by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$, if there exist three smooth functions f_{1}, f_{2} and f_{3} on \bar{M} such that

$$
\begin{align*}
\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z} & =f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \tag{5.1}\\
+ & f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
+ & f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \\
& \quad+\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\}
\end{align*}
$$

where \widetilde{R} is the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \bar{M}.

Remark 3. The notion of generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ was introduced by Alegre et.al. [1]. Indefinite Sasakian, Kenmotsu and cosymplectic space forms are important kinds of generalized Sasakian space forms such that

$$
f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4} ; \quad f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4} ; \quad f_{1}=f_{2}=f_{3}=\frac{c}{4}
$$

respectively, where c is a constant J -sectional curvature of each space forms.
Let \bar{R} be the curvature tensor of the quarter-symmetric metric connection $\bar{\nabla}$ on \bar{M}. By directed calculations from (1.1) and (1.2), we see that

$$
\begin{equation*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}=\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z}-\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} J Z \tag{5.2}
\end{equation*}
$$

Denote by R and R^{*} the curvature tensors of the induced connections ∇ and ∇^{*} on M and $S(T M)$ respectively. Using the local Gauss-Weingarten formulae, we have the Gauss-Codazzi equations for M and $S(T M)$ such that

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \tag{5.3}\\
& +D(X, Z) A_{L} Y-D(Y, Z) A_{L} X \\
+ & \left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)\right. \\
& +\tau(X) B(Y, Z)-\tau(Y) B(X, Z) \\
& +\lambda(X) D(Y, Z)-\lambda(Y) D(X, Z) \\
& \quad-\theta(X) B(F Y, Z)+\theta(Y) B(F X, Z)\} N, \\
+ & \left\{\left(\nabla_{X} D\right)(Y, Z)-\left(\nabla_{Y} D\right)(X, Z)\right. \\
& +\rho(X) B(Y, Z)-\rho(Y) B(X, Z) \\
& \quad-\theta(X) D(F Y, Z)+\theta(Y) D(F X, Z)\} L \\
R(X, Y) P Z= & R^{*}(X, Y) P Z+C(X, P Z) A_{\xi}^{*} Y-C(Y, P Z) A_{\xi} X \tag{5.4}\\
+ & \left\{\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)\right. \\
& \quad-\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z) \\
& \quad-\theta(X) C(F Y, P Z)+\theta(Y) C(F X, P Z)\} \xi \\
R(X, Y) \xi= & -\nabla_{X}^{*}\left(A_{\xi}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi}^{*} X\right)+A_{\xi}^{*}[X, Y] \tag{5.5}\\
& \quad-\tau(X) A_{\xi}^{*} Y+\tau(Y) A_{\xi}^{*} X \\
+ & \left\{C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y)\right\} \xi
\end{align*}
$$

Comparing the tangential and lightlike transversal components of two equations of (5.3) and (5.2) and using (3.4), we obtain

$$
\begin{align*}
& R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\} \tag{5.6}\\
& +f_{2}\{\bar{g}(X, J Z) F Y-\bar{g}(Y, J Z) F X+2 \bar{g}(X, J Y) F Z\} \\
& +f_{3}\{[\theta(X) Y-\theta(Y) X] \theta(Z)+[g(X, Z) \theta(Y)-g(Y, Z) \theta(X)] \zeta\} \\
& -\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} F Z \\
& +B(Y, Z) A_{N} X-B(X, Z) A_{N} Y+D(Y, Z) A_{L} X-D(X, Z) A_{L} Y,
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z) \tag{5.7}\\
& +\lambda(X) D(Y, Z)-\lambda(Y) D(X, Z)-\theta(X) B(F Y, Z)+\theta(Y) B(F X, Z) \\
& +\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} u(Z) \\
& =f_{2}\{u(Y) \bar{g}(X, J Z)-u(X) \bar{g}(Y, J Z)+2 u(Z) \bar{g}(X, J Y)\}
\end{align*}
$$

Taking the scalar product with N to (5.3) and then, substituting (5.4) and (5.2) into the left and right terms and using $(2.12)_{4}$, we obtain

$$
\begin{align*}
& \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)-\tau(X) C(Y, P Z) \tag{5.8}\\
& +\tau(Y) C(X, P Z)-\rho(X) D(Y, P Z)+\rho(Y) D(X, P Z) \\
& -\theta(X) C(F Y, P Z)+\theta(Y) C(F X, P Z) \\
& +\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} v(P Z) \\
& =f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{v(Y) \bar{g}(X, J P Z)-v(X) \bar{g}(Y, J P Z)+2 v(P Z) \bar{g}(X, J Y)\} \\
& +f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z) .
\end{align*}
$$

Theorem 5.1. Let M be a half lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a quarter-symmetric metric connection. Then $\alpha, \beta, f_{1}, f_{2}$ and f_{3} are satisfied $\beta=0, \alpha$ is a constant on M and

$$
f_{1}-f_{2}=\alpha^{2}, \quad f_{1}-f_{3}=\alpha(\alpha+1)
$$

Proof. Applying ∇_{Y} to $(3.13)_{1}: B(X, U)=C(X, V)$ and using (2.1), (2.10) $)_{1,2}$, $(2.11)_{1,2},(3.4),(3.7)_{1},(3.8),(3.14)$ and (3.15), we have

$$
\begin{aligned}
& \left(\nabla_{X} B\right)(Y, U) \\
& =\left(\nabla_{X} C\right)(Y, V)-2 \tau(X) C(Y, V)-\lambda(X) C(Y, W)-\rho(X) B(Y, W) \\
& -\alpha^{2} u(Y) \eta(X)-\beta^{2} u(X) \eta(Y)+\alpha \beta\{u(X) v(Y)-u(Y) v(X)\} \\
& -g\left(A_{\xi}^{*} X, F\left(A_{N} Y\right)\right)-g\left(A_{\xi}^{*} Y, F\left(A_{N} X\right)\right)
\end{aligned}
$$

Substituting this equation into (5.7) with $Z=U$ and using (3.13) $)_{2,3}$, we get

$$
\begin{aligned}
& \left(\nabla_{X} C\right)(Y, V)-\left(\nabla_{Y} C\right)(X, V)-\tau(X) C(Y, V) \\
& +\tau(Y) C(X, V)-\rho(X) D(Y, V)+\rho(Y) D(X, V) \\
& -\theta(X) C(F Y, V)+\theta(Y) C(F X, V) \\
& +\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X) \\
& +\left(\alpha^{2}-\beta^{2}\right)\{u(X) \eta(Y)-u(Y) \eta(X)\} \\
& +2 \alpha \beta\{u(X) v(Y)-u(Y) v(X)\} \\
& =f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\} .
\end{aligned}
$$

Comparing this equation with (5.8) such that $P Z=V$, we obtain

$$
\begin{aligned}
& \left\{f_{1}-f_{2}-\alpha^{2}+\beta^{2}\right\}[u(Y) \eta(X)-u(X) \eta(Y)] \\
& =2 \alpha \beta\{u(Y) v(X)-u(X) v(Y)\}
\end{aligned}
$$

Taking $X=\xi, Y=U$ and $X=V, Y=U$ to this equation by turns, we get

$$
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0
$$

Applying $\bar{\nabla}_{X}$ to $\eta(Y)=\bar{g}(Y, N)$ and using (2.4) and (2.5) we have

$$
\left(\nabla_{X} \eta\right)(Y)=-g\left(A_{N} X, Y\right)+\tau(X) \eta(Y)
$$

Applying ∇_{Y} to (3.8) and using (2.11), (3.6), (3.8), (3.19) and $\alpha \beta=0$, we have

$$
\begin{aligned}
\left(\nabla_{X} C\right)(Y, \zeta) & =-(X \alpha) v(Y)+(X \beta) \eta(Y)+\alpha^{2} \theta(Y) \eta(X)+\beta^{2} \theta(X) \eta(Y) \\
& +\alpha\left\{g\left(A_{N} X, F Y\right)+g\left(A_{N} Y, F X\right)-v(Y) \tau(X)-w(Y) \rho(X)\right\} \\
& -\beta\left\{g\left(A_{N} X, Y\right)+g\left(A_{N} Y, X\right)-\tau(X) \eta(Y)\right\}
\end{aligned}
$$

Substituting this equation and (3.8) into (5.8) such that $P Z=\zeta$, we get

$$
\begin{aligned}
& \left\{X \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha\right] \theta(X)\right\} \eta(Y) \\
& -\left\{Y \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha\right] \theta(Y)\right\} \eta(X) \\
& =\{X \alpha+\beta \theta(X)\} v(Y)-\{Y \alpha+\beta \theta(Y)\} v(X)
\end{aligned}
$$

Taking $X=\zeta, Y=\xi$ and $X=U, Y=V$ to this by turns, we obtain

$$
f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)+\alpha-\zeta \beta, \quad U \alpha=0
$$

Applying ∇_{Y} to (3.7) ${ }_{1}$ and using (3.6) and (3.18), we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, \zeta) & =-(X \alpha) u(Y)-\beta B(Y, X) \\
& +\alpha\{u(Y) \tau(X)+w(Y) \lambda(X)+B(X, F Y)+B(Y, F X)\}
\end{aligned}
$$

Substituting this into (5.7) such that $Z=\zeta$ and using (3.7) and (3.10), we get

$$
\{X \alpha+\beta \theta(X)\} u(Y)=\{Y \alpha+\beta \theta(X)\} u(X)
$$

Taking $Y=U$ and using the fact that $U \alpha=0$, we have $X \alpha+\beta \theta(X)=0$.
Assume that $\beta \neq 0$. Then $X \alpha \neq 0$ due to $X \alpha=-\beta \theta(X)$. Applying $\bar{\nabla}_{X}$ to $\alpha \beta=0$ and using the fact that $X \alpha=-\beta \theta(X)$, we obtain

$$
\alpha X \beta=\beta^{2} \theta(X)
$$

Multiplying β to this result, we get $\beta=0$. It is a contradiction to $\beta \neq 0$. Thus $\beta=0$. Therefore, α is a constant, $f_{1}-f_{2}=\alpha^{2}$ and $f_{1}-f_{3}=\alpha(\alpha+1)$.
Definition 5. (1) A screen distribution $S(T M)$ is called totally umbilical [5] in M if there exists smooth function γ such that $A_{N}=\gamma P$, or equivalently,

$$
C(X, P Y)=\gamma g(X, Y)
$$

In case $\gamma=0$, we say that $S(T M)$ is totally geodesic in M.
(2) A lightlike submanifold M is called screen conformal [6] if there exists non-vanishing smooth function φ on \mathcal{U} such that $A_{N}=\varphi A_{\xi}^{*}$, or equivalently,

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, P Y) \tag{5.9}
\end{equation*}
$$

Theorem 5.2. Let M be a half lightlike submanifold of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a quarter-symmetric metric connection. If one of the following four statements
(1) F is recurrent,
(2) F is Lie recurrent,
(3) $S(T M)$ is totally umbilical,
(4) M is screen conformal,
is satisfied, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a flat manifold with an indefinite cosymplectic structure. In case (1), M is also flat. In case (3), $S(T M)$ is totally geodesic.

Proof. (1) By Theorem 4.1, we get (4.8), (4.10) and the results: $\alpha=\beta=0$ and $\lambda=\rho=0$. Since $\alpha=\beta=0$, we have $f_{1}=f_{2}=f_{3}$ by Theorem 5.1.

Taking the scalar product with U to $(4.8)_{1,2}$, we get

$$
C(X, U)=0, \quad D(X, U)=0
$$

Applying ∇_{X} to $C(Y, U)=0$ and using (4.10) ${ }_{1}$, we obtain

$$
\left(\nabla_{X} C\right)(Y, U)=0
$$

Substituting the last equations into (5.8) with $P Z=U$, we have

$$
\left(f_{1}+f_{2}\right)\{v(Y) \eta(X)-v(X) \eta(Y)\}=0 .
$$

Taking $X=V$ and $Y=\xi$ to this result, we obtain $f_{1}+f_{2}=0$. Therefore, we see that $f_{1}=f_{2}=f_{3}=0$. Thus $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

As $f_{1}=f_{2}=f_{3}=0,(5.6)$ is reduced to

$$
\begin{aligned}
R(X, Y) Z & =B(Y, Z) A_{N} X-B(X, Z) A_{N} Y \\
& +D(Y, Z) A_{L} X-D(X, Z) A_{L} Y
\end{aligned}
$$

Using this, (2.10), (2.12), (4.8), (4.9) and the fact that $\lambda=0$, we obtain

$$
\begin{aligned}
R(X, Y) Z & =\{\mu(Y) \mu(X)-\mu(X) \mu(Y)\} u(Z) U \\
& +\{\sigma(Y) \sigma(X)-\sigma(X) \sigma(Y)\} w(Z) W=0
\end{aligned}
$$

for all $X, Y, Z \in \Gamma(T M)$. Therefore $R=0$ and M is also flat.
(2) By Theorem 4.2 and 5.1 , we get $\alpha=0$ and $\beta=0$. Thus \bar{M} is an indefinite cosymplectic manifold. Since $\alpha=0$, we have $f_{1}=f_{2}=f_{3}$ by Theorem 5.1. Also, since $\beta=0$, by (3) of Theorem 4.2, we see that $\tau=0$. Taking the scaler product with N to (5.6) with $Z=\xi$ and then, comparing this result with the radical component of (5.5) and using (2.9) and (2.12), we have

$$
\begin{aligned}
& C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right) \\
& =f_{2}\{u(Y) v(X)-u(X) v(Y)\}+\lambda(X) \rho(Y)-\lambda(Y) \rho(X) .
\end{aligned}
$$

Taking $X=U$ and $Y=V$ to this and using (4.18) and the result (4) in Theorem 4.2 , we get $f_{2}=0$. Thus $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.
(3) Assume that $S(T M)$ is totally umbilical. Then (3.8) is reduced to $\gamma \theta(X)=-\alpha v(X)+\beta \eta(X)$. Replacing X by V, ξ and ζ to this equation by turns, we have $\alpha=0, \beta=0$ and $\gamma=0$ respectively. Since $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold. As $\gamma=0, S(T M)$ is totally geodesic.

As $\alpha=0, f_{1}=f_{2}=f_{3}$ by Theorem 5.1. Taking $P Z=U$ to (5.8) with $C=0$ and using the facts that $D(X, U k)=C(X, W)=0$, we get

$$
\left(f_{1}+f_{2}\right)\{v(Y) \eta(X)-v(X) \eta(Y)\}=0
$$

Taking $X=\xi$ and $Y=V$ to this equation, we get $f_{1}+f_{2}=0$. Thus $f_{1}=f_{2}=$ $f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.
(4) Replacing Y by ζ to (5.9) and using (3.7) ${ }_{1}$ and (3.8), we have

$$
\alpha v(X)-\beta \eta(X)=\alpha \varphi u(X)
$$

Taking $X=V$ and $X=\xi$ to this equation by turns, we obtain $\alpha=0$ and $\beta=0$ respectively. As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold. Since $\alpha=0$, we have $f_{1}=f_{2}=f_{3}$ by Theorem 5.1.

Applying ∇_{X} to $C(Y, P Z)=\varphi B(Y, P Z)$, we have

$$
\left(\nabla_{X} C\right)(Y, P Z)=(X \varphi) B(Y, P Z)+\varphi\left(\nabla_{X} B(Y, P Z)\right.
$$

Substituting this equation into (5.8) and using (5.7), we have

$$
\begin{aligned}
& \{X \varphi-2 \varphi \tau(X)\} B(Y, P Z)-\{Y \varphi-2 \varphi \tau(Y)\} B(X, P Z) \\
& -\{\rho(X)+\varphi \lambda(X)\} D(Y, P Z)+\{\rho(Y)+\varphi \lambda(Y)\} D(X, P Z) \\
& +\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} g(\omega, P Z) \\
& =f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{g(\omega, Y) \bar{g}(X, J P Z)-g(\omega, X) \bar{g}(Y, J P Z)+2 g(\omega, P Z) \bar{g}(X, J Y) \\
& +f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z)
\end{aligned}
$$

where $\omega=U-\varphi V$. From (3.13) ${ }_{1}$ and (5.9); (3.13) $)_{2,3}$ and (5.9), we get

$$
\begin{equation*}
B(X, \omega)=0, \quad D(X, \omega)=0 \tag{5.11}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\theta(\xi)=0$ and $\theta(V)=0$ by turns and using (2.4), (2.8), (2.10), (3.15) and the fact that $\alpha=\beta=0$, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(\xi)=B(X, \zeta)=0, \quad\left(\bar{\nabla}_{X} \theta\right)(V)=\beta u(X)=0 . \tag{5.12}
\end{equation*}
$$

Replacing $P Z$ by ω to (5.10) and using (5.11), we obtain

$$
\begin{aligned}
& -2 \varphi\left\{\left(\bar{\nabla}_{X} \theta\right)(Y)-\left(\bar{\nabla}_{Y} \theta\right)(X)\right\} \\
& \left.=\left(f_{1}+f_{2}\right)\{g(\omega, Y) \eta(X)-g(\omega, X) \eta(Y)\}-4 \varphi f_{2} \bar{g}(X, J Y)\right\}
\end{aligned}
$$

Taking $X=\xi$ and $Y=V$ to this equation and using (5.12), we get $f_{1}+f_{2}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

References

[1] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157-183.
[2] C. Călin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).
[3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344.
[4] K.L. Duggal and A. Bejancu, Lightlike Submanifolds of codimension 2, Math. J. Toyama Univ., 15 (1992), 59-82.
[5] K.L. Duggal and D.H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ., 22 (1999), 121-161.
[6] D.H. Jin, A semi-Riemannian manifold of quasi-constant curvature admits some half lightlike submanifolds, Bull. Korean Math. Soc., 50 (2013), no. 3, 1041-1048.
[7] D.H. Jin, Half lightlike submanifolds of an indefinite trans-Sasakian manifold, Bull. Korean Math. Soc., 51 (2014), no. 4, 979-994.
[8] D.H. Jin, Indefinite trans-Sasakian manifold of quasi-constant curvature with lightlike hypersurfaces, Balkan J. Geo. Its Appl., 20 (2015), no. 1, 65-75.
[9] D.H. Jin, Geometry of lightlike hypersurface of an indefinite Kaehler manifold with a quarter-symmetric metric connection, Appl. Math. Sci., 10 (2016), no. 6, 289-299.
[10] D.H. Jin, Geometry of lightlike hypersurface of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection, Appl. Math. Sci., 10 (2016), no. 13, 625636.
[11] D.H. Jin and J.W. Lee, A semi-Riemannian manifold of quasi-constant curvature admits some lightlike submanifolds, Inter. J. Math. Analysis, 9 (2015), no. 25, 1215-1229.
[12] D.N. Kupeli, Singular Semi-Riemannian Geometry. Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[13] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
[14] K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor, N.S., 38 (1982), 13-18.

Dae Ho Jin
Department of Mathematics
Dongguk University
Gyeonguu 780-714, Republic of Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received January 20, 2017; Accepted September 19, 2017.
 2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. quarter-symmetric metric connection, half lightlike submanifold, indefinite trans-Sasakian structure.

