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HALF LIGHTLIKE SUBMANIFOLDS OF AN
INDEFINITE TRANS-SASAKIAN MANIFOLD WITH
A QUARTER-SYMMETRIC METRIC CONNECTION

DAE Ho JIN

ABSTRACT. Jin [10] studied lightlike hypersurfaces of an indefinite trans-
Sasakian manifold with a quarter-symmetric metric connection. We study
further the geometry of this subject. The object of this paper is to study
the geometry of half lightlike submanifolds of an indefinite trans-Sasakian
manifold with a quarter-symmetric metric connection.

1. Introduction
A linear connection V on a semi-Riemannian manifold (M, g) is said to be a
quarter-symmetric connection if its torsion tensor 7T satisfies

T(X,Y)=0(Y)JX — 0(X)JY, (1.1)

where J is a (1, 1)-type tensor field and 6 is a 1-form associated with a smooth
vector field ¢ by 8(X) = g(X, ). Moreover, if this connection V is metric, i.e.,
Vg = 0, then V is called a quarter-symmetric metric connection. The notion
of quarter-symmetric metric connection was introduced by Yano-Imai [14]. The
geometry of lightlike hypersurface of an indefinite trans-Sasakian manifolds with
a quarter-symmetric metric connection was studied by Jin [10]. Throughout this
paper, denote by X, Y and Z the smooth vector fields on M.

Let M be a submanifold of a semi-Riemannian manifold (M, g) of codimen-
sion 2 with the tangent bundle TM and the normal bundle TM=*. Denoted by
Rad(TM) =TM NTM* the radical distribution. Then M is called

(1) half lightlike submanifold if rank{Rad(TM)} =1,
(2) coisotropic submanifold if rank{Rad(TM)} = 2.

Half lightlike submanifold was introduced by Duggal-Bejancu [4] and later, stud-
ied by Duggal-Jin [5]. Its geometry is more general than that of lightlike hy-
persurface or coisotropic submanifold. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.
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The notion of trans-Sasakian manifold, of type (a, ), was introduced by
Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important
kinds of trans-Sasakian manifold such that

a=1, =0 a=0, g=1; a=p=0,
respectively. We say that a trans-Sasakian manifold M is an indefinite trans-
Sasakian manifold if M is a semi-Riemannian manifold.

In this paper, we study half lightlike submanifolds of an indefinite trans-
Sasakian manifold M = (M, J, ¢, 0, §) with a quarter-symmetric metric connec-
tion, in which the tensor field J and the 1-form 6, defined by (1.1), are identical
with the structure tensor field J and the structure 1-form 6 of the indefinite
trans-Sasakian structure (.J,6,¢,g) on M, respectively.

Remark 1. Denote by V the Levi-Civita connection of M with respect to the
semi-Riemannian metric g. Due to [9], it is known that a linear connection V
on M is a quarter-symmetric metric connection if and only if V satisfies

VgV =VgV —0(X)JY. (1.2)
2. Preliminaries
An odd-dimensional semi-Riemannian manifold (M, g) is called an indefinite

trans-Sasakian manifold if there exist a structure set {J, ¢, 6, g}, a Levi-Civita

connection V and two smooth functions a and B, where J is a (1, 1)-type tensor
field, ¢ is a vector field, and 6 is a 1-form such that

X =-X+0X)¢, 00 =1, 0(X)=eg(X,(),
0o =0, g(JX,JY)=g(X,V)—ed(X)(), (2.1)
(Vi)Y = a{g(X, V)¢ — (V)X }

+ B{g(JX,Y)( — e0(Y)J X},

where € denotes e = 1 or —1 according as ( is spacelike or timelike, respectively.
{J, ¢, 0, g} is called an indefinite trans-Sasakian structure of type («, 5).

In the entire discussion of this paper, we shall assume that the structure
vector field ( is a spacelike one, i.e., € = 1, without loss of generality.

Replacing the Levi-Civita connection v by the quarter-symmetric metric
connection V given by (1.2), the last equation of (2.1) is reduced to
(Vx )Y = o{g(X, V)¢ = 0(Y)X} + B{g(JX,Y)( — 0(Y)JX}. (2.2)
Replacing Y by ¢ to (2.2) and using J¢ = 0 and 8(Vx() = 0, we obtain
Vx(¢ = —aJX + B(X — 0(X)0). (2.3)

Let (M, g) be a half lightlike submanifold of an indefinite trans-Sasakian man-
ifold M equipped with the radical distribution Rad(T' M), a screen distribution
S(TM) and a coscreen distribution S(TM*) such that

TM = Rad(TM) ®opin S(TM),  TM™* = Rad(TM) @ o, S(TM™).
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Denote by F(M) the algebra of smooth functions on M and by I'(E) the F (M)
module of smooth sections of a vector bundle E over M. Also denote by (2.1);
the i-th equation of the six equations in (2.1). We use the same notations for any
others. Let £ be a section of Rad(T'M). Assume that L is a unit spacelike basis
vector field of S(T'M+), without loss of generality. Consider the orthogonal
complementary distribution S(TM)+ to S(TM) in TM. Certainly ¢ and L
belong to T'(S(TM)=+). Thus we have

S(TM)* = S(TM*) @opin S(TM*Y)*,

where S(T M=)+ is the orthogonal complementary to S(TM=) in S(TM)*+. Tt
is known [5] that, for any null section £ of Rad(TM), there exists a uniquely
defined null vector field N € I'(S(TM=*)"1) satisfying

g&,N)=1, g(N,N)=g(N,X)=g(N,L) =0, VX e T(S(TM)).

Denote by ltr(T M) the vector subbundle of S(TM*)L locally spanned by N.
Then we show that S(TM*)* = Rad(TM) @ ltr(TM). We call N, ltr(TM)
and tr(TM) = S(TM~1) @y ltr (T M) the null transversal vector field, lightlike
transversal vector bundle and transversal vector bundle of M with respect to the
screen distribution S(T'M), respectively.

Denote by X, Y and Z the vector fields on M, unless otherwise specified. As
the tangent bundle TM of the ambient manifold M is satisfied

TM =TM @ tr(TM) = TM & ltr(TM) @open S(TM™),

the Gauss and Weingarten formulae of M are given respectively by

VxY = VxY + B(X,Y)N + D(X,Y)L, (2.4)
VxN = —A X 4+ 7(X)N + p(X)L, (2.5)
VxL = —A, X +\X)N, (2.6)

where V is the linear connection on M, B and D are the local second funda-
mental forms of M, A, and A, are the shape operators, and 7, p and A are
1-forms on TM. Let P be the projection morphism of TM on S(TM) and 7
a 1-form such that n(X) = g(X,N). As TM = S(TM) @ortn Rad(T M), the
Gauss and Weingarten formulae of S(T'M) are given respectively by

VxPY = VXPY +C(X,PY), (2.7)

Vx§ = —A;X —1(X)¢, (2.8)

where V* is the linear connection on S(T'M), C is the local screen second
fundamental form of S(T'M), A is the shape operator.

From the facts that B(X,Y) = g(VxY, &) and D(X,Y) = g(VxY, L), we
show that B and D are independent of the choice of S(T'M) and satisfy

B(X,¢) =0, D(X,€) = —A\(X). (2.9)
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The local second fundamental forms are related to their shape operators by
B(X,Y) =g(A{ X,Y), g(AgX,N) =0, (2.10)
C(X,PY)=yg(A,X,PY), g(AyX,N) =0, (2.11)
DX,)Y) =g(A, X,Y) = MX)n(Y),  g(A, X,N) =p(X). (2.12)

3. Structure equations on M

Calin [2] proved that if ¢ is tangent to M, then it belongs to S(T'M) which we
assume. It is known [7] that, for any half lightlike submanifold M of an indefinite
trans-Sasakian manifold M, J(Rad(TM)), J(Iitr(TM)) and J(S(TM*1)) are
vector subbundles of S(T'M), of rank 1. There exist two non-degenerate almost
complex distributions H, and H with respect to J such that

S(TM) = {J(Rad(TM)) ® J(Itr(TM))} ®oren J(S(TM™Y)) ®open, Ho,
H = Rad(TM) ®prtn, J(Rad(TM)) ®ortn Ho, -
In this case, the tangent bundle T'M is decomposed as follow:
TM = H @ J(Itr(TM)) @ope, J(S(TML)). (3.1)

Consider two local null vector fields U and V', a local unit spacelike vector field
W on S(T'M), and their 1-forms u, v and w defined by

U=—JN, V= —Jg, W =—JL, (3.2)
u(X)=g(X,V), v(X)=g9X,U), wlX)=g(X,W). (3.3

Let S be the projection morphism of TM on H and F the tensor field of type
(1,1) globally defined on M by F' = Jo S. Then JX is expressed as

JX = FX + u(X)N + w(X)L. (3.4)
Applying J to (3.4) and using (2.1) and (3.2), we have
F2X = - X + u(X)U + w(X)W +0(X)C. (3.5)

In the following, we say that F' is the structure tensor field of M.
Substituting (3.4) into (2.3) and using (2.4), we see that

Vx({=—-aFX + (X - 0(X)(), (3.6)
B(X,¢) = —au(X),  D(X, ¢) = —aw(X). (3.7)

Applying Vx to g(¢, N) = 0 and using (2.3), (2.5) and (2.11), we have
C(X,¢) = —av(X) + Bn(X). (3.8)

Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent, lightlike
transversal and co-screen components, we obtain
T(X,Y)=0Y)FX —0(X)FY, (3.9)
B(X,)Y)—-B(Y,X) =0Y)u(X) — 0(X)u(Y), (3.10)
DX, Y)-DY,X)=0Y)w(X) - 0(X)w(Y), (3.11)
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where T is the torsion tensor with respect to V. From (3.10) and (3.11), we
see that B and D are never symmetric. Replacing Y by £ to (2.10) and using
(2.9)1, (3.10) and the fact that S(TM) is non-degenerate, we obtain

ALE=0. (3.12)

Applying Vx to (3.2) ~ (3.4) by turns and using (2.4), (2.5), (2.6), (2.9) ~ (2.10),
(2.12) and (3.2) ~(3.4), we have
B(X,U) = C(X,V), B(X,W)=D(X,V), C(X,W)=D(X,U), (3.13)
VxU=FA,X)+17(X)U + p(X)W — {an(X) + Bv(X)}¢, (3.14)
ViV = F(ALX) — 7(X)V = A(X)W — Bu(X)C, (3.15)
VW = F(A, X) + \(X)U — Bw(X)C, (3.16)
(VxF)(Y) = u(Y)A, X + w(Y)A, X — B(X,Y)U - DX, Y)W  (3.17)
+ o{g(X,Y)C - 0(Y) X} + p{g(J X, Y)¢ — 0(Y)F X},
(Vxu)(Y) = —-u¥)7(X) —w(Y)NX) — B0(Y)u(X) — B(X,FY), (3.18)
(Vx0)(Y) = o(Y)7(X) + w(Y)p(X) = 0(Y){an(X) + fo(X)} (3.19)
— g(A X, FY).

4. Recurrent and Lie recurrent structure tensors

Definition 1. The structure tensor field F' of M is said to be recurrent [8] if
there exists a smooth 1-form w on M such that

(VxF)Y = w(X)FY.

Definition 2. A half lightlike submanifold M of a semi-Riemannian manifold
(M, g) is said to be statical [6] if VxL € T'(S(TM)) for any X € T'(TM).

Remark 2. From (2.6) and (2.12)3, we show that Definition 2 is equivalent to
the conditions: A = 0 and p = 0. The condition A = 0 is equivalent to the
conception: M is irrotational, i.e., Vx& € T(TM) [12]. The condition p = 0 is
equivalent to the conception: M is solenoidal, i.e., A, X € T'(S(TM)) [11].

Theorem 4.1. Let M be a half lightlike submanifold of an indefinite trans-
Sasakian manifold M with a quarter-symmetric metric connection. If F is
recurrent, then the following six statements are satisfied:

(1) F is parallel with respect to the induced connection V on M,

(2) M is an indefinite cosymplectic manifold, i.e., o = 8 = 0,

(3) M is statical, i.e., A\ =0 and p =0,

(4) W is parallel vector field with respect to the connection V,

(5) H, J(ltr(TM)) and J(S(TM™)) are parallel distributions on M,

(6) M is locally a product manifold C, x C,, X M, where C, is a null curve
tangent to J(Itr(TM)), C,, is a spacelike curve tangent to J(S(TM™)),
and M* is a leaf of the distributions H.
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Proof. Denote by pu, v and o the 1-forms on M such that
w(X)=B(X,U)=C(X,V), o(X)=D(X,W),
v(X)=B(X,W)=D(X,V).

(1) As F is recurrent, from the above definition and (3.17), we get
(X)FY = w(Y)A X +w(Y)A, X — B(X,Y)U - D(X,Y)W (4.1)
+ o{g(X,Y)¢ = 0(Y)X} + B{g(J X, Y)( = 0(Y)FX}.
Replacing Y by £ and using (2.9) and the fact that F€ = =V, we get
—w(X)V = AMX)W + pu(X)C. (4.2)

Taking the scalar product with U to (4.2), we obtain w = 0. Thus F is parallel
with respect to the connection V.

(2) Taking the scalar product with ¢ to (4.2), we get 8 = 0. Taking the
scalar product with U to (4.1) satisfying @ = 8 = 0, we get

u(Y)g(Ay X, U) +w(Y)g(A,X,U) — af(Y)v(X) = 0. (4.3)

Replacing Y by ( to this equation, we have o = 0. As o = 3 = 0, M is an
indefinite cosymplectic manifold.

(3) Taking the scalar product with W to (4.2) and with N to (4.1), we have
AMX) =0, p(X)=g(A,X,N)=0. (4.4)
As A =0, M is irrotational. As p =0, M is solenoidal. Thus M is statical.
(4) Taking Y =U and Y = W to (4.3) by turns, we have
g(A X, U)=C(X,U) =0, g(A, X, U)=0. (4.5)
Taking the scalar product with V and W to (4.1) by turns, we have
B(X,Y) =u(Y)u(X) + w¥)v(X), D(X,Y) =w()o(X), (4.6)
due to (4.5)2. Replacing Y by V to the two equations of (4.6), we have
B(X,V) =0, v(X)=B(X,W)=D(X,V)=0. (4.7
Taking Y =U and Y = W to (4.1) and using (4.5)2 and (4.7)2, we get
A X = pu(X)U, A, X = o(X)W. (4.8)
Using (4.7)2 and the fact that S(T'M) is non-degenerate, (4.6); reduces
A X = p(X)V. (4.9)

Substituting (4.8); into (3.14) and (4.8)s into (3.16), and using the facts that
A=p=a=F=0and FU = FW =0, we have

VxU =71(X)U, VxW =0. (4.10)
From (4.10)2, we see that W is parallel vector field with respect to V.

—_—
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(5) From (4.10), we see that both J(ltr(TM)) and J(S(TM=)) are parallel
distributions on M with respect to the connection V, that is,

VxU € T(J(Itr(TM))), VxW e T(J(S(TM™1))).
On the other hand, taking Y € T'(H) to (4.1), we have
B(X,Y)=0, DX, Y)=0, VXeI'(T'M), VY ecI'(H). (4.11)

By straightforward calculations from (2.8), (2.10), (3.4), (3.15), (3.16), (4.7),
(4.11) and the facts that A =0 and FZ € T'(H,) for Z € T'(H,), we have
9(Vx§ V) =-B(X,V) =0, g(Vx§ W) =—-v(X)=0,
9(VxV, V) =0, g(VxV, W) = —A(X) =0,
9(VxZ,V)=B(X,FZ)=0, ¢g(VxZ, W)=D(X,FZ)=0.
for all X e T(TM) and Z € T'(H,), or equivalently, we get
VxY el(H), VX eI'(TM), VY eI'(H).
Thus H is a parallel distribution on M with respect to V.
(6) As J(Itr(TM)), J(S(TM~)) and H are parallel distributions and satisfed
(3.1), by the decomposition theorem of de Rham [3], M is locally a product

manifold C,, x C,, x M*, where C, is a null curve tangent to J(ltr(TM)), C,,
is a spacelike curve tangent to J(S(TM*)), and M*¥ is a leaf of H. O

Definition 3. The structure tensor field F' of M is said to be Lie recurrent [8]
if there exists a smooth 1-form ¥ on M such that

(L, F)Y =9(X)FY,

where £, denotes the Lie derivative on M with respect to X. The structure
tensor field F is called Lie parallel if L, F = 0.

Theorem 4.2. Let M be a half lightlike submanifold of an indefinite trans-
Sasakian manifold M with a quarter-symmetric metric connection. If F is Lie
recurrent, then the following four statements are satisfied :

(1) F is Lie parallel,

(2) =0, i.e., M is not an indefinite Sasakian manifold,

(3) the 1-forms 6 and 7 satisfy dd =0 and 7 = =36 on M,

(4) the shape operator A satisfies

AV =0, AU =0.
Proof. (1) As (L, F)Y = [X,FY]— F[X,Y], using (3.9) and (3.17), we get
HX)FY = -Vpy X + FVy X —0(Y){X — 0(X)(} (4.12)

+uY)A, X +w(Y)A, X
—{BX,Y) = 0(Y)u(X)}U — {D(X,Y) = 0(Y)w(X)}W
+ ofg(X, V)¢ = 0(Y)X} + B{g(JX,Y)( - 0(Y)F X},



550 D. H. JIN

by (3.5). Taking Y = £ to this equation and using (2.9), we have

- X)V =Vy X + FVeX + MX)W + Bu(X)C. (4.13)
Taking the scalar product with V', W and ¢ to (4.13) by turns, we have
u(VyX) =0, w(VyX)=-XX), 6(VyX)=—pulX). (4.14)

Replacing Y by V to (4.12) and using the fact that 8(V) = 0, we have
X)) =—-VeX+FVyX —B(X,V)U - D(X, V)W + au(X)(. (4.15)
Applying F' to this equation and using (3.5) and (4.14), we obtain
VX)WV =VyX + FVeX + AMX)W + Bu(X)C.
Comparing this equation with (4.13), we get ¥ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with ¢ to (4.15) with ¥ = 0, we have
9(VeX, 0) = au(X).
Replacing X by U to this equation and using (3.14), we obtain a = 0.
(3) Applying V to 8(Y) = g(Y,¢) and using (1.1) and (2.3), we obtain
d9(X,Y) = ag(X,JY),
due to the fact V is metric. As o = 0, we see that df = 0.
Taking X = W to (4.12) and using (2.12), (3.5), (3.10) and (3.11), we get
WY)A W +w(Y)A,W — A, Y — F(A, FY) (4.16)
—AMFY)U - 0(Y)W = 0.
Taking the scalar product with N and using (2.11)s and (2.12)1,2, we have
D(FY,U) =w(Y)p(W) — p(Y). (4.17)

Replacing Y by V and using (2.9)2, we get p(V) = A(U), while taking X = U
to (4.14) and using (3.14), we have p(V) = —A(U). Thus, p(V) = A(U) = 0.
Taking Y = & to (4.16), we have A, & = F(A, V) + A(V)U. Multiplying this by
V and using (2.9), (2.12) and (3.11), we get A(V)) = 0. Therefore,

p(V)=0, AU) =0, A(V) =0. (4.18)
Taking the scalar product with N to (4.12) and using (2.12)5, we have
(Vv X, N) + g(Ty X, U) + w(Y)p(X) (4.19)

— O n(X) + Bu(X)} = 0.
Replacing X by £ to (4.19) and using (2.8) and (2.10);, 2, we have
B(X,U)+6(X) —w(X)p(&) =7(FX). (4.20)
Replacing X by U and using (3.13); and the fact that FU = 0, we get
C(U,V) = B(U,U) = 0. (4.21)
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Replacing X by V to (4.19) and using (2.10), (3.15) and p(V') = 0, we have

B(FX,U)+7(X)+p0(X)=0
Taking X = U, X =W and X = ( to this equation by turns, we get

T(U) =0, (W) =0, 7(¢) = —p. (4.22)
Replacing Y by & to (4.17) and using (3.11), we obtain
D(U,V) = p(&). (4.23)
Taking X = U to (4.12) and using (2.11), (3.5) and (3.10) ~ (3.14), we get
u(Y)A, U+ w(Y)A,U-0(Y)U (4.24)

—F(AJFY) =AY — 7(FY)U — p(FY)W = 0.
Taking the scalar product with V' and using (3.13), (4.21) and (4.23), we get
B(X,U) +0(X) —w(X)p(§) = —7(FX).

Comparing this equation with (4.20), we obtain 7(FX) = 0. Replacing X by
FY and using (3.5) and (4.22), we have 7 = — 36 on M.

(4) Replacing Y by W to (4.24) and using FW =0, we have A, U = A ,W.
Taking the scalar product with U and using (3.13)3, we have
cC(Ww,U) =C(U,W).
Taking the scalar product with W to (4.24), we have
p(FY) = =C(Y, W) +u(Y)CUW) +w(Y)D(U,W).
Taking the scalar product with U to (4.16) and using (3.13)3, we have
p(FY) = C(Y, W) — u(Y)C(U, W) — w(Y)D(U, V).
From the last two equations, we obtain p(FY) = 0. It follows that p(§) = 0.
As 7(X) = B0(X), we have 7(V) = 7(§) = 0. Taking X = ¢ to (4.13) and
using (3.12), we obtain A7V = 0. From (3.10) and (4.20), we have B(U, X) =0
i.e., g(AgU,X) =0. As S(TM) is non-degenerate, we obtain AU =0. O

5. Indefinite generalized Sasakian space forms

Definition 4. An indefinite trans-Sasakian manifold (M’i]’ ¢,0,9) is called an
indefinite generalized Sasakian space form, denote it by M(f1, fa, f3), if there
exist three smooth functions f1, fo and f3 on M such that

R(X,Y)Z = fi{a(Y,Z2)X —g(X,2)Y} (5.1)
+ fg{g(X .]Z)JY g(Y,JZ)JX +2g(X,JY)JZ}
+ f:{0(X)0(2)Y - 0(Y)0(2)X
+g(X,Z) (Y)¢ = a(Y, Z2)0(X)¢},

where R is the curvature tensor of the Levi-Civita connection V on M.
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Remark 3. The notion of generalized Sasakian space form M(f1, f2, f3) was
introduced by Alegre et. al. [1]. Indefinite Sasakian, Kenmotsu and cosymplectic
space forms are important kinds of generalized Sasakian space forms such that

3 1. e3¢ _ ¢ _ cl. o
fi=B fh=f=5 A= fo=fi=9 fi=fo=fz=%

respectively, where c¢ is a constant J-sectional curvature of each space forms.

Let R be the curvature tensor of the quarter-symmetric metric connection V
on M. By directed calculations from (1.1) and (1.2), we see that
R(X,Y)Z = R(X,Y)Z - {(Vx0)(Y) = (Vy0)(X)}J Z. (5.2)

Denote by R and R* the curvature tensors of the induced connections V and
V* on M and S(T M) respectively. Using the local Gauss-Weingarten formulae,
we have the Gauss-Codazzi equations for M and S(T'M) such that

R(X,Y)Z = R(X,Y)Z + B(X,Z)A,Y — B(Y,Z)A, X (5.3)
+ D(X,Z)A,Y — D(Y,Z)A, X
+{(VxB)(Y,Z) - (VyB)(X, Z)
+ 7(X)B(Y, Z) — 7(Y)B(X, 2)
+AX)D(Y, Z) — \(Y)D(X, Z)
— O(X)B(FY, Z) + 0(Y)B(FX, Z)}N,
+{(VxD)(Y,Z) = (VyD)(X, Z)
+p(X)B(Y,Z) — p(Y)B(X, Z)
— 9(X)D(FY, Z) + 0(Y)D(FX, Z)} L,

R(X,Y)PZ = R*(X,Y)PZ + C(X,PZ)AfY — C(Y,PZ)A:X  (5.4)
+ {(VxO)(Y,PZ) - (VyC)(X,PZ)
— 7(X)C(Y,PZ) +7(Y)C(X, PZ)
— 0(X)C(FY,PZ) + 0(Y)C(FX, PZ)}¢,

R(X,Y){ ==V (AfY) + Vi (A X) + A [X, Y] (5.5)
— T(X)AEY + T(Y)AZX
+{C(Y, Af X) — C(X, AFY) — 2d7(X,Y)}¢,
Comparing the tangential and lightlike transversal components of two equa-
tions of (5.3) and (5.2) and using (3.4), we obtain
R(X,Y)Z = [i{g(Y. 2)X — g(X, 2)Y} (5.6)
+ f{g(X,JZ)FY — g(Y,JZ)FX +25(X,JY)FZ}
+ F{0X)Y = 00V)X]0(Z) + [9(X, 2)0(Y) — g(Y, 2)0(X)]C}
— {(VxO)(Y) ~ (Vv O)(X)}FZ
+B(Y,Z2)A, X —B(X,2)A, Y+ D(Y,Z)A, X — D(X,Z)A,Y,
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(VxB)(Y,Z)— (VyB)(X,Z)+7(X)B(Y,Z) —7(Y)B(X, 2) (5.7)
T AX)D(Y, Z2) - AY)D(X, Z) - 0(X)B(FY, Z) + 0(Y)B(FX, Z)
+{(Vx0)(Y) = (Vyo)( )}U( )
= fo{u(Y)3(X,JZ) —u(X)g(Y, ] Z) + 2u(Z)g(X, JY)},
Taking the scalar product with NV to (5.3) and then, substituting (5.4) and (5.2)
into the left and right terms and using (2.12)4, we obtain
(VxO)Y,PZ)— (VyvC)X,PZ)—1(X)C(Y,PZ) (5.8)
+7(Y)C(X,PZ) — p(X)D(Y,PZ)+ p(Y)D(X,PZ)
—0(X)C(FY,PZ)+0(Y)C(FX,PZ)
+{(Vx0)(Y) — (Vy0)(X)}u(PZ)
= fi{g(Y, PZ)n(X) — g(X, PZ)n(Y)}
+ f{v(Y)g(X,JPZ) —v(X)g(Y,JPZ) + 20(PZ)g(X, JY)}
+ f3{0(X)n(Y) — 6(Y)n(X)}0(PZ).

Theorem 5.1. Let M be a half lightlike submanifold of an indefinite generalized

Sasakian space form M(f1, fo, f3) with a quarter-symmetric metric connection.

Then a, B, f1, fo and f3 are satisfied B =0, « is a constant on M and

fi—fo=0a*  fi—fi=ala+1).

Proof. Applying Vy to (3.13);: B(X,U) = C(X,V) and using (2.1), (2.10);, 2,

(2.11)1. 2, (3.4), (3.7)1, (3.8), (3.14) and (3.15), we have

(VxB)(Y,U)

= (VxO)Y,V) = 2r(X)C(Y, V) = M(X)C(Y, W) — p(X)B(Y, W)
= a®u(Y)n(X) = B2 u(X)n(Y) + af{u(X)v(Y) — u(Y)v(X)}
—g(Ae X, F(AY)) — g(AgY, F(Ay X)).

Substituting this equation into (5.7) with Z = U and using (3.13)2 3, we get
(VxC)(Y,V) = (TyC)(X, V) = (X)C(Y, V)
+7(Y)C(X,V)—p(X)D(Y,V)+ p(Y)D(X,V)
—0(X)C(FY,V)+06(Y)C(FX,V)
+(Vx0)(Y) = (Vy0)(X)

T (02 = B {u(X)n(Y) — u(Y)(X)}
T 20B{u(X)o(Y) - u(Y)o(X))
— Lfu(Y)n(X) - u(X)n(Y) +25(X, JY)}.

Comparing this equation with (5.8) such that PZ =V, we obtain

{fi = fa— a? + B2Hu(Y)n(X) — u(X)n(Y)]
= 208{u(Y)o(X) — u(X)o(Y)}.
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Taking X =¢,Y =U and X = V,Y = U to this equation by turns, we get
fi—fa=a" =P, af = 0.
Applying Vx to n(Y) = g(Y, N) and using (2.4) and (2.5) we have
(Vxm)(Y) = —g(A, X, V) + 7(X)n(Y).
Applying Vy to (3.8) and using (2.11), (3.6), (3.8), (3.19) and a8 = 0, we have
(VxO)Y,¢) = —=(Xa)o(Y) + (XB)n(Y) + a®0(Y )n(X) + B20(X)n(Y)
+o{g(Ay X, FY) + g(Ay Y, FX) —o(Y)7(X) — w(Y)p(X)}
= B{9(Ay X, Y) + g(AY, X) = 7(X)n(Y)}.
Substituting this equation and (3.8) into (5.8) such that PZ = ¢, we get
{(XB+[fi = fs = (a® = %) — a)0(X)}n(Y)
—{YB+1fi = fs— (a® = 57) — a]0(Y)}n(X)
= {Xa+ (X)) oY) —{Ya+ 80(Y)}v(X).
Taking X =(, Y =€ and X =U,Y =V to this by turns, we obtain
fi=fs=(" =B +a—(B, Ua =0.
Applying Vy to (3.7); and using (3.6) and (3.18), we have
(VxB)(Y,() = —(Xa)u(Y) - BB(Y, X)
+ o{u)7(X) + w(Y)ANX)+ B(X,FY)+ B(Y,FX)}.
Substituting this into (5.7) such that Z = ¢ and using (3.7) and (3.10), we get
{Xa+80(X)}u(Y)={Ya+ B0(X)}u(X).

Taking Y = U and using the fact that Ua = 0, we have Xa + 86(X) = 0.
Assume that 8 # 0. Then Xa # 0 due to Xa = —p60(X). Applying Vx to
af = 0 and using the fact that Xa = —56(X), we obtain

aXp = B*(X).
Multiplying § to this result, we get 5 = 0. It is a contradiction to 8 # 0. Thus
B = 0. Therefore, « is a constant, fi — fo = o and f; — f3 = a(a + 1). O

Definition 5. (1) A screen distribution S(TM) is called totally umbilical [5] in
M if there exists smooth function v such that A, = P, or equivalently,

C(X,PY) =9(X,Y).
In case v = 0, we say that S(T'M) is totally geodesic in M.

(2) A lightlike submanifold M is called screen conformal [6] if there exists
non-vanishing smooth function ¢ on U such that A, = @A}, or equivalently,

C(X,PY) = ¢B(X, PY). (5.9)

Theorem 5.2. Let M be a half lightlike submanifold of M(f1, fa, f3) with a
quarter-symmetric metric connection. If one of the following four statements
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(1) F is recurrent,

(2) F is Lie recurrent,

(3) S(TM) is totally umbilical,

(4) M is screen conformal,
is satisfied, then M (f1, f2, f3) is a flat manifold with an indefinite cosymplectic
structure. In case (1), M is also flat. In case (3), S(T'M) is totally geodesic.

Proof. (1) By Theorem 4.1, we get (4.8), (4.10) and the results: « = 8 = 0 and
A =p=0. Since a = f =0, we have f; = fo = f3 by Theorem 5.1.
Taking the scalar product with U to (4.8)1, 2, we get
C(X,U) =0, D(X,U) =0.
Applying Vx to C(Y,U) = 0 and using (4.10)1, we obtain
(VxC)(Y,U) =0.
Substituting the last equations into (5.8) with PZ = U, we have

(i + f2){o(Y)n(X) —v(X)n(Y)} = 0.
Taking X =V and Y = ¢ to this result, we obtain fi + fo = 0. Therefore, we
see that f; = fo = f3 = 0. Thus M(f1, f2, f3) is flat.

As f1 = fo = f3 =0, (5.6) is reduced to

R(X,Y)Z = B(Y,Z)A X — B(X,Z)A,Y
+D(Y,2)A, X — D(X,Z)A.Y.
Using this, (2.10), (2.12), (4.8), (4.9) and the fact that A = 0, we obtain
R(X,Y)Z = {p(Y)u(X) — p(X)u(Y) }u(Z)U
+{o(Y)o(X) —o(X)o(Y)}w(Z2)W =0,
for all X, Y, Z € T'(T'M). Therefore R =0 and M is also flat.

(2) By Theorem 4.2 and 5.1, we get a = 0 and 3 = 0. Thus M is an indefinite
cosymplectic manifold. Since o = 0, we have f; = fo = f3 by Theorem 5.1.
Also, since 8 = 0, by (3) of Theorem 4.2, we see that 7 = 0. Taking the scaler
product with N to (5.6) with Z = £ and then, comparing this result with the
radical component of (5.5) and using (2.9) and (2.12), we have

C(Y, A X) — C(X, AFY)

= fo{u(Y)o(X) = u(X)o(Y)} + AMX)p(Y) = A(Y)p(X).
Taking X = U and Y = V to this and using (4.18) and the result (4) in Theorem
4.2, we get fo =0. Thus f1 = fo = f3 =0 and M(f1, fo, f3) is flat.

(3) Assume that S(TM) is totally umbilical. Then (3.8) is reduced to
v9(X) = —av(X) + Bn(X). Replacing X by V, £ and ¢ to this equation by
turns, we have o = 0, 3 = 0 and v = 0 respectively. Since o = 3 = 0, M is an
indefinite cosymplectic manifold. As v =0, S(TM) is totally geodesic.
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Asa =0, fi = fo = f3 by Theorem 5.1. Taking PZ = U to (5.8) with C =0
and using the facts that D(X,Uk) = C(X,W) = 0, we get
(fr + f2){o(Y)n(X) = o(X)n(Y)} = 0.
Taking X = ¢ and Y =V to this equation, we get f1 + fo = 0. Thus f; = fo =
f3 =0 and M(fl, fQ, fg) is flat.
(4) Replacing Y by ¢ to (5.9) and using (3.7); and (3.8), we have
av(X) — fn(X) = apu(X).
Taking X =V and X = £ to this equation by turns, we obtain « = 0 and 3 =0
respectively. As a = 8 = 0, M is an indefinite cosymplectic manifold. Since
a = 0, we have f; = fo = f3 by Theorem 5.1.
Applying Vx to C(Y,PZ) = pB(Y, PZ), we have
(VxC)(Y, PZ) = (X¢)B(Y, PZ) + ¢(Vx B(Y, PZ).
Substituting this equation into (5.8) and using (5.7), we have
{Xo —207(X)}B(Y,PZ) —{Y¢ —2¢07(Y)} B(X, PZ) (5.10)
—{p(X) + PAX)}D(Y, PZ) +{p(Y) + pA(Y)}D(X, PZ)
+{(VxO)(Y) = (Vy0)(X)}g(w, PZ)
= Ji{g(Y, PZ)n(X) — (X, PZ)n(Y)}
+ fa{g(w, Y)g(X, JPZ) — g(w, X)g(Y, JPZ) + 2g9(w, PZ)g(X, JY)
+ f3{0(X)n(Y) — 6(Y)n(X)}6(PZ).
where w = U — ¢V. From (3.13); and (5.9); (3.13)2,3 and (5.9), we get
B(X,w) =0, D(X,w) =0. (5.11)
Applying Vx to 8(¢) =0 and 6(V) = 0 by turns and using (2.4), (2.8), (2.10),
(3.15) and the fact that a = 8 = 0, we have
(Vx0)(€) = B(X,¢) =0, (Vx0)(V) = Bu(X) = 0. (5.12)
Replacing PZ by w to (5.10) and using (5.11), we obtain
= 20{(Vx0)(Y) — (Vy0)(X)}
= (i + f2){9(w, Y)n(X) — g(w, X)n(Y)} — 4o f29(X, JY)}

Taking X = ¢ and Y =V to this equation and using (5.12), we get f1 + f2 = 0.
Therefore, f1 = fo = f3 =0 and M (f1, fo, f3) is flat. O
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