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HALF LIGHTLIKE SUBMANIFOLDS OF AN

INDEFINITE TRANS-SASAKIAN MANIFOLD WITH

A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Abstract. Jin [10] studied lightlike hypersurfaces of an indefinite trans-

Sasakian manifold with a quarter-symmetric metric connection. We study
further the geometry of this subject. The object of this paper is to study

the geometry of half lightlike submanifolds of an indefinite trans-Sasakian
manifold with a quarter-symmetric metric connection.

1. Introduction
A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be a

quarter-symmetric connection if its torsion tensor T̄ satisfies

T̄ (X̄, Ȳ ) = θ(Ȳ )JX̄ − θ(X̄)JȲ , (1.1)

where J is a (1, 1)-type tensor field and θ is a 1-form associated with a smooth
vector field ζ by θ(X) = ḡ(X, ζ). Moreover, if this connection ∇̄ is metric, i.e.,
∇̄ḡ = 0, then ∇̄ is called a quarter-symmetric metric connection. The notion
of quarter-symmetric metric connection was introduced by Yano-Imai [14]. The
geometry of lightlike hypersurface of an indefinite trans-Sasakian manifolds with
a quarter-symmetric metric connection was studied by Jin [10]. Throughout this
paper, denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ .

Let M be a submanifold of a semi-Riemannian manifold (M̄, ḡ) of codimen-
sion 2 with the tangent bundle TM and the normal bundle TM⊥. Denoted by
Rad(TM) = TM ∩ TM⊥ the radical distribution. Then M is called

(1) half lightlike submanifold if rank{Rad(TM)} = 1,
(2) coisotropic submanifold if rank{Rad(TM)} = 2.

Half lightlike submanifold was introduced by Duggal-Bejancu [4] and later, stud-
ied by Duggal-Jin [5]. Its geometry is more general than that of lightlike hy-
persurface or coisotropic submanifold. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.
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The notion of trans-Sasakian manifold, of type (α, β), was introduced by
Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important
kinds of trans-Sasakian manifold such that

α = 1, β = 0; α = 0, β = 1; α = β = 0,

respectively. We say that a trans-Sasakian manifold M̄ is an indefinite trans-
Sasakian manifold if M̄ is a semi-Riemannian manifold.

In this paper, we study half lightlike submanifolds of an indefinite trans-
Sasakian manifold M̄ ≡ (M̄, J, ζ, θ, ḡ) with a quarter-symmetric metric connec-
tion, in which the tensor field J and the 1-form θ, defined by (1.1), are identical
with the structure tensor field J and the structure 1-form θ of the indefinite
trans-Sasakian structure (J, θ, ζ, ḡ) on M̄ , respectively.

Remark 1. Denote by ∇̃ the Levi-Civita connection of M̄ with respect to the
semi-Riemannian metric ḡ. Due to [9], it is known that a linear connection ∇̄
on M̄ is a quarter-symmetric metric connection if and only if ∇̄ satisfies

∇̄X̄ Ȳ = ∇̃X̄ Ȳ − θ(X̄)JȲ . (1.2)

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefinite
trans-Sasakian manifold if there exist a structure set {J, ζ, θ, ḡ}, a Levi-Civita

connection ∇̃ and two smooth functions α and β, where J is a (1, 1)-type tensor
field, ζ is a vector field, and θ is a 1-form such that

J2X̄ = −X̄ + θ(X̄)ζ, θ(ζ) = 1, θ(X̄) = εḡ(X̄, ζ),

θ ◦ J = 0, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− εθ(X̄)θ(Ȳ ), (2.1)

(∇̃X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − εθ(Ȳ )X̄}
+ β{ḡ(JX̄, Ȳ )ζ − εθ(Ȳ )JX̄},

where ε denotes ε = 1 or −1 according as ζ is spacelike or timelike, respectively.
{J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure of type (α, β).

In the entire discussion of this paper, we shall assume that the structure
vector field ζ is a spacelike one, i.e., ε = 1, without loss of generality.

Replacing the Levi-Civita connection ∇̃ by the quarter-symmetric metric
connection ∇̄ given by (1.2), the last equation of (2.1) is reduced to

(∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}. (2.2)

Replacing Y by ζ to (2.2) and using Jζ = 0 and θ(∇̄Xζ) = 0, we obtain

∇̄Xζ = −αJX + β(X − θ(X)ζ). (2.3)

Let (M, g) be a half lightlike submanifold of an indefinite trans-Sasakian man-
ifold M̄ equipped with the radical distribution Rad(TM), a screen distribution
S(TM) and a coscreen distribution S(TM⊥) such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥).
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Denote by F (M) the algebra of smooth functions on M and by Γ(E) the F (M)
module of smooth sections of a vector bundle E over M . Also denote by (2.1)i
the i-th equation of the six equations in (2.1). We use the same notations for any
others. Let ξ be a section of Rad(TM). Assume that L is a unit spacelike basis
vector field of S(TM⊥), without loss of generality. Consider the orthogonal
complementary distribution S(TM)⊥ to S(TM) in TM̄ . Certainly ξ and L
belong to Γ(S(TM)⊥). Thus we have

S(TM)⊥ = S(TM⊥) ⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. It
is known [5] that, for any null section ξ of Rad(TM), there exists a uniquely
defined null vector field N ∈ Γ(S(TM⊥)⊥) satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).

Denote by ltr(TM) the vector subbundle of S(TM⊥)⊥ locally spanned by N .
Then we show that S(TM⊥)⊥ = Rad(TM) ⊕ ltr(TM). We call N, ltr(TM)
and tr(TM) = S(TM⊥)⊕orth ltr(TM) the null transversal vector field, lightlike
transversal vector bundle and transversal vector bundle of M with respect to the
screen distribution S(TM), respectively.

Denote by X, Y and Z the vector fields on M , unless otherwise specified. As
the tangent bundle TM̄ of the ambient manifold M̄ is satisfied

TM̄ = TM ⊕ tr(TM) = TM ⊕ ltr(TM)⊕orth S(TM⊥),

the Gauss and Weingarten formulae of M are given respectively by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L, (2.4)

∇̄XN = −A
N
X + τ(X)N + ρ(X)L, (2.5)

∇̄XL = −A
L
X + λ(X)N, (2.6)

where ∇ is the linear connection on M , B and D are the local second funda-
mental forms of M , A

N
and A

L
are the shape operators, and τ , ρ and λ are

1-forms on TM . Let P be the projection morphism of TM on S(TM) and η
a 1-form such that η(X) = ḡ(X,N). As TM = S(TM) ⊕orth Rad(TM), the
Gauss and Weingarten formulae of S(TM) are given respectively by

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.7)

∇Xξ = −A∗ξX − τ(X)ξ, (2.8)

where ∇∗ is the linear connection on S(TM), C is the local screen second
fundamental form of S(TM), A∗ξ is the shape operator.

From the facts that B(X,Y ) = ḡ(∇̄XY, ξ) and D(X,Y ) = ḡ(∇̄XY, L), we
show that B and D are independent of the choice of S(TM) and satisfy

B(X, ξ) = 0, D(X, ξ) = −λ(X). (2.9)
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The local second fundamental forms are related to their shape operators by

B(X,Y ) = g(A∗ξX,Y ), ḡ(A∗ξX,N) = 0, (2.10)

C(X,PY ) = g(A
N
X,PY ), ḡ(A

N
X,N) = 0, (2.11)

D(X,Y ) = g(A
L
X,Y )− λ(X)η(Y ), ḡ(A

L
X,N) = ρ(X). (2.12)

3. Structure equations on M

Cǎlin [2] proved that if ζ is tangent to M , then it belongs to S(TM) which we
assume. It is known [7] that, for any half lightlike submanifoldM of an indefinite
trans-Sasakian manifold M̄ , J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are
vector subbundles of S(TM), of rank 1. There exist two non-degenerate almost
complex distributions Ho and H with respect to J such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥))⊕orth Ho,

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho, .

In this case, the tangent bundle TM is decomposed as follow:

TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)). (3.1)

Consider two local null vector fields U and V , a local unit spacelike vector field
W on S(TM), and their 1-forms u, v and w defined by

U = −JN, V = −Jξ, W = −JL, (3.2)

u(X) = g(X,V ), v(X) = g(X,U), w(X) = g(X,W ). (3.3)

Let S be the projection morphism of TM on H and F the tensor field of type
(1, 1) globally defined on M by F = J ◦ S. Then JX is expressed as

JX = FX + u(X)N + w(X)L. (3.4)

Applying J to (3.4) and using (2.1) and (3.2), we have

F 2X = −X + u(X)U + w(X)W + θ(X)ζ. (3.5)

In the following, we say that F is the structure tensor field of M .
Substituting (3.4) into (2.3) and using (2.4), we see that

∇Xζ = −αFX + β(X − θ(X)ζ), (3.6)

B(X, ζ) = −αu(X), D(X, ζ) = −αw(X). (3.7)

Applying ∇̄X to ḡ(ζ,N) = 0 and using (2.3), (2.5) and (2.11), we have

C(X, ζ) = −αv(X) + βη(X). (3.8)

Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent, lightlike
transversal and co-screen components, we obtain

T (X,Y ) = θ(Y )FX − θ(X)FY, (3.9)

B(X,Y )−B(Y,X) = θ(Y )u(X)− θ(X)u(Y ), (3.10)

D(X,Y )−D(Y,X) = θ(Y )w(X)− θ(X)w(Y ), (3.11)
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where T is the torsion tensor with respect to ∇. From (3.10) and (3.11), we
see that B and D are never symmetric. Replacing Y by ξ to (2.10) and using
(2.9)1, (3.10) and the fact that S(TM) is non-degenerate, we obtain

A∗ξξ = 0. (3.12)

Applying ∇̄X to (3.2)∼ (3.4) by turns and using (2.4), (2.5), (2.6), (2.9)∼ (2.10),
(2.12) and (3.2)∼ (3.4), we have

B(X,U) = C(X,V ), B(X,W ) = D(X,V ), C(X,W ) = D(X,U), (3.13)

∇XU = F (A
N
X) + τ(X)U + ρ(X)W − {αη(X) + βv(X)}ζ, (3.14)

∇XV = F (A∗ξX)− τ(X)V − λ(X)W − βu(X)ζ, (3.15)

∇XW = F (A
L
X) + λ(X)U − βw(X)ζ, (3.16)

(∇XF )(Y ) = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W (3.17)

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX},
(∇Xu)(Y ) = −u(Y )τ(X)− w(Y )λ(X)− βθ(Y )u(X)−B(X,FY ), (3.18)

(∇Xv)(Y ) = v(Y )τ(X) + w(Y )ρ(X)− θ(Y ){αη(X) + βv(X)} (3.19)

− g(A
N
X,FY ).

4. Recurrent and Lie recurrent structure tensors

Definition 1. The structure tensor field F of M is said to be recurrent [8] if
there exists a smooth 1-form $ on M such that

(∇XF )Y = $(X)FY.

Definition 2. A half lightlike submanifold M of a semi-Riemannian manifold
(M̄, ḡ) is said to be statical [6] if ∇̄XL ∈ Γ(S(TM)) for any X ∈ Γ(TM).

Remark 2. From (2.6) and (2.12)2, we show that Definition 2 is equivalent to
the conditions: λ = 0 and ρ = 0. The condition λ = 0 is equivalent to the
conception: M is irrotational, i.e., ∇̄Xξ ∈ Γ(TM) [12]. The condition ρ = 0 is
equivalent to the conception: M is solenoidal, i.e., A

L
X ∈ Γ(S(TM)) [11].

Theorem 4.1. Let M be a half lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with a quarter-symmetric metric connection. If F is
recurrent, then the following six statements are satisfied:

(1) F is parallel with respect to the induced connection ∇ on M ,
(2) M̄ is an indefinite cosymplectic manifold, i.e., α = β = 0,
(3) M is statical, i.e., λ = 0 and ρ = 0,
(4) W is parallel vector field with respect to the connection ∇,
(5) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M ,
(6) M is locally a product manifold C

U
×C

W
×M ], where C

U
is a null curve

tangent to J(ltr(TM)), C
W

is a spacelike curve tangent to J(S(TM⊥)),
and M ] is a leaf of the distributions H.
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Proof. Denote by µ, ν and σ the 1-forms on M such that

µ(X) = B(X,U) = C(X,V ), σ(X) = D(X,W ),

ν(X) = B(X,W ) = D(X,V ).

(1) As F is recurrent, from the above definition and (3.17), we get

$(X)FY = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W (4.1)

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX}.

Replacing Y by ξ and using (2.9) and the fact that Fξ = −V , we get

−$(X)V = λ(X)W + βu(X)ζ. (4.2)

Taking the scalar product with U to (4.2), we obtain $ = 0. Thus F is parallel
with respect to the connection ∇.

(2) Taking the scalar product with ζ to (4.2), we get β = 0. Taking the
scalar product with U to (4.1) satisfying $ = β = 0, we get

u(Y )g(A
N
X,U) + w(Y )g(A

L
X,U)− αθ(Y )v(X) = 0. (4.3)

Replacing Y by ζ to this equation, we have α = 0. As α = β = 0, M̄ is an
indefinite cosymplectic manifold.

(3) Taking the scalar product with W to (4.2) and with N to (4.1), we have

λ(X) = 0, ρ(X) = ḡ(A
L
X,N) = 0. (4.4)

As λ = 0, M is irrotational. As ρ = 0, M is solenoidal. Thus M is statical.

(4) Taking Y = U and Y = W to (4.3) by turns, we have

g(A
N
X,U) = C(X,U) = 0, g(A

L
X,U) = 0. (4.5)

Taking the scalar product with V and W to (4.1) by turns, we have

B(X,Y ) = u(Y )µ(X) + w(Y )ν(X), D(X,Y ) = w(Y )σ(X), (4.6)

due to (4.5)2. Replacing Y by V to the two equations of (4.6), we have

B(X,V ) = 0, ν(X) = B(X,W ) = D(X,V ) = 0. (4.7)

Taking Y = U and Y = W to (4.1) and using (4.5)2 and (4.7)2, we get

A
N
X = µ(X)U, A

L
X = σ(X)W. (4.8)

Using (4.7)2 and the fact that S(TM) is non-degenerate, (4.6)1 reduces

A∗ξX = µ(X)V. (4.9)

Substituting (4.8)1 into (3.14) and (4.8)2 into (3.16), and using the facts that
λ = ρ = α = β = 0 and FU = FW = 0, we have

∇XU = τ(X)U, ∇XW = 0. (4.10)

From (4.10)2, we see that W is parallel vector field with respect to ∇.
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(5) From (4.10), we see that both J(ltr(TM)) and J(S(TM⊥)) are parallel
distributions on M with respect to the connection ∇, that is,

∇XU ∈ Γ(J(ltr(TM))), ∇XW ∈ Γ(J(S(TM⊥))).

On the other hand, taking Y ∈ Γ(H) to (4.1), we have

B(X,Y ) = 0, D(X,Y ) = 0, ∀X ∈ Γ(TM), ∀Y ∈ Γ(H). (4.11)

By straightforward calculations from (2.8), (2.10), (3.4), (3.15), (3.16), (4.7),
(4.11) and the facts that λ = 0 and FZ ∈ Γ(Ho) for Z ∈ Γ(Ho), we have

g(∇Xξ, V ) = −B(X,V ) = 0, g(∇Xξ, W ) = −ν(X) = 0,

g(∇XV, V ) = 0, g(∇XV, W ) = −λ(X) = 0,

g(∇XZ, V ) = B(X,FZ) = 0, g(∇XZ, W ) = D(X,FZ) = 0.

for all X ∈ Γ(TM) and Z ∈ Γ(Ho), or equivalently, we get

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

Thus H is a parallel distribution on M with respect to ∇.

(6) As J(ltr(TM)), J(S(TM⊥)) and H are parallel distributions and satisfed
(3.1), by the decomposition theorem of de Rham [3], M is locally a product
manifold C

U
× C

W
×M ], where C

U
is a null curve tangent to J(ltr(TM)), C

W

is a spacelike curve tangent to J(S(TM⊥)), and M ] is a leaf of H. �

Definition 3. The structure tensor field F of M is said to be Lie recurrent [8]
if there exists a smooth 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X. The structure
tensor field F is called Lie parallel if L

X
F = 0.

Theorem 4.2. Let M be a half lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with a quarter-symmetric metric connection. If F is Lie
recurrent, then the following four statements are satisfied :

(1) F is Lie parallel,
(2) α = 0, i.e., M̄ is not an indefinite Sasakian manifold,
(3) the 1-forms θ and τ satisfy dθ = 0 and τ = −βθ on M ,
(4) the shape operator A∗ξ satisfies

A∗ξV = 0, A∗ξU = 0.

Proof. (1) As (L
X
F )Y = [X,FY ]− F [X,Y ], using (3.9) and (3.17), we get

ϑ(X)FY = −∇FYX + F∇YX − θ(Y ){X − θ(X)ζ} (4.12)

+ u(Y )A
N
X + w(Y )A

L
X

− {B(X,Y )− θ(Y )u(X)}U − {D(X,Y )− θ(Y )w(X)}W
+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX},
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by (3.5). Taking Y = ξ to this equation and using (2.9), we have

−ϑ(X)V = ∇VX + F∇ξX + λ(X)W + βu(X)ζ. (4.13)

Taking the scalar product with V , W and ζ to (4.13) by turns, we have

u(∇VX) = 0, w(∇VX) = −λ(X), θ(∇VX) = −βu(X). (4.14)

Replacing Y by V to (4.12) and using the fact that θ(V ) = 0, we have

ϑ(X)ξ = −∇ξX + F∇VX −B(X,V )U −D(X,V )W + αu(X)ζ. (4.15)

Applying F to this equation and using (3.5) and (4.14), we obtain

ϑ(X)V = ∇VX + F∇ξX + λ(X)W + βu(X)ζ.

Comparing this equation with (4.13), we get ϑ = 0. Thus F is Lie parallel.

(2) Taking the scalar product with ζ to (4.15) with ϑ = 0, we have

g(∇ξX, ζ) = αu(X).

Replacing X by U to this equation and using (3.14), we obtain α = 0.

(3) Applying ∇̄X̄ to θ(Ȳ ) = ḡ(Ȳ , ζ) and using (1.1) and (2.3), we obtain

dθ(X̄, Ȳ ) = αḡ(X̄, JȲ ),

due to the fact ∇̄ is metric. As α = 0, we see that dθ = 0.
Taking X = W to (4.12) and using (2.12), (3.5), (3.10) and (3.11), we get

u(Y )A
N
W + w(Y )A

L
W −A

L
Y − F (A

L
FY ) (4.16)

− λ(FY )U − θ(Y )W = 0.

Taking the scalar product with N and using (2.11)2 and (2.12)1, 2, we have

D(FY,U) = w(Y )ρ(W )− ρ(Y ). (4.17)

Replacing Y by V and using (2.9)2, we get ρ(V ) = λ(U), while taking X = U
to (4.14)2 and using (3.14), we have ρ(V ) = −λ(U). Thus, ρ(V ) = λ(U) = 0.
Taking Y = ξ to (4.16), we have A

L
ξ = F (A

L
V ) + λ(V )U . Multiplying this by

V and using (2.9), (2.12) and (3.11), we get λ(V ) = 0. Therefore,

ρ(V ) = 0, λ(U) = 0, λ(V ) = 0. (4.18)

Taking the scalar product with N to (4.12) and using (2.12)2, we have

− ḡ(∇FYX,N) + g(∇YX,U) + w(Y )ρ(X) (4.19)

− θ(Y ){η(X) + βv(X)} = 0.

Replacing X by ξ to (4.19) and using (2.8) and (2.10)1, 2, we have

B(X,U) + θ(X)− w(X)ρ(ξ) = τ(FX). (4.20)

Replacing X by U and using (3.13)1 and the fact that FU = 0, we get

C(U, V ) = B(U,U) = 0. (4.21)
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Replacing X by V to (4.19) and using (2.10), (3.15) and ρ(V ) = 0, we have

B(FX,U) + τ(X) + βθ(X) = 0.

Taking X = U , X = W and X = ζ to this equation by turns, we get

τ(U) = 0, τ(W ) = 0, τ(ζ) = −β. (4.22)

Replacing Y by ξ to (4.17) and using (3.11), we obtain

D(U, V ) = ρ(ξ). (4.23)

Taking X = U to (4.12) and using (2.11), (3.5) and (3.10)∼ (3.14), we get

u(Y )A
N
U + w(Y )A

L
U − θ(Y )U (4.24)

−F (A
N
FY )−A

N
Y − τ(FY )U − ρ(FY )W = 0.

Taking the scalar product with V and using (3.13), (4.21) and (4.23), we get

B(X,U) + θ(X)− w(X)ρ(ξ) = −τ(FX).

Comparing this equation with (4.20), we obtain τ(FX) = 0. Replacing X by
FY and using (3.5) and (4.22), we have τ = −βθ on M .

(4) Replacing Y by W to (4.24) and using FW = 0, we have A
L
U = A

N
W .

Taking the scalar product with U and using (3.13)3, we have

C(W,U) = C(U,W ).

Taking the scalar product with W to (4.24), we have

ρ(FY ) = −C(Y,W ) + u(Y )C(U,W ) + w(Y )D(U,W ).

Taking the scalar product with U to (4.16) and using (3.13)3, we have

ρ(FY ) = C(Y,W )− u(Y )C(U,W )− w(Y )D(U,W ).

From the last two equations, we obtain ρ(FY ) = 0. It follows that ρ(ξ) = 0.
As τ(X) = βθ(X), we have τ(V ) = τ(ξ) = 0. Taking X = ξ to (4.13) and

using (3.12), we obtain A∗ξV = 0. From (3.10) and (4.20), we have B(U,X) = 0,

i.e., g(A∗ξU,X) = 0. As S(TM) is non-degenerate, we obtain A∗ξU = 0. �

5. Indefinite generalized Sasakian space forms

Definition 4. An indefinite trans-Sasakian manifold (M̄, J, ζ, θ, ḡ) is called an
indefinite generalized Sasakian space form, denote it by M̄(f1, f2, f3), if there
exist three smooth functions f1, f2 and f3 on M̄ such that

R̃(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ } (5.1)

+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}
+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ},

where R̃ is the curvature tensor of the Levi-Civita connection ∇̃ on M̄ .
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Remark 3. The notion of generalized Sasakian space form M̄(f1, f2, f3) was
introduced by Alegre et. al. [1]. Indefinite Sasakian, Kenmotsu and cosymplectic
space forms are important kinds of generalized Sasakian space forms such that

f1 = c+3
4 , f2 = f3 = c−1

4 ; f1 = c−3
4 , f2 = f3 = c+1

4 ; f1 = f2 = f3 = c
4

respectively, where c is a constant J-sectional curvature of each space forms.

Let R̄ be the curvature tensor of the quarter-symmetric metric connection ∇̄
on M̄ . By directed calculations from (1.1) and (1.2), we see that

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄ − {(∇̄Xθ)(Y )− (∇̄Y θ)(X)}JZ. (5.2)

Denote by R and R∗ the curvature tensors of the induced connections ∇ and
∇∗ on M and S(TM) respectively. Using the local Gauss-Weingarten formulae,
we have the Gauss-Codazzi equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X (5.3)

+ D(X,Z)A
L
Y −D(Y,Z)A

L
X

+ {(∇XB)(Y, Z)− (∇YB)(X,Z)

+ τ(X)B(Y,Z)− τ(Y )B(X,Z)

+ λ(X)D(Y,Z)− λ(Y )D(X,Z)

− θ(X)B(FY,Z) + θ(Y )B(FX,Z)}N,
+ {(∇XD)(Y,Z)− (∇YD)(X,Z)

+ ρ(X)B(Y,Z)− ρ(Y )B(X,Z)

− θ(X)D(FY,Z) + θ(Y )D(FX,Z)}L,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)AξX (5.4)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− θ(X)C(FY, PZ) + θ(Y )C(FX,PZ)}ξ,

R(X,Y )ξ = −∇∗X(A∗ξY ) +∇∗Y (A∗ξX) +A∗ξ [X,Y ] (5.5)

− τ(X)A∗ξY + τ(Y )A∗ξX

+ {C(Y,A∗ξX)− C(X,A∗ξY )− 2dτ(X,Y )}ξ,

Comparing the tangential and lightlike transversal components of two equa-
tions of (5.3) and (5.2) and using (3.4), we obtain

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y } (5.6)

+ f2{ḡ(X, JZ)FY − ḡ(Y, JZ)FX + 2ḡ(X, JY )FZ}
+ f3{[θ(X)Y − θ(Y )X]θ(Z) + [g(X,Z)θ(Y )− g(Y, Z)θ(X)]ζ}
− {(∇̄Xθ)(Y )− (∇̄Y θ)(X)}FZ
+ B(Y,Z)A

N
X −B(X,Z)A

N
Y +D(Y,Z)A

L
X −D(X,Z)A

L
Y,
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(∇XB)(Y, Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z) (5.7)

+ λ(X)D(Y,Z)− λ(Y )D(X,Z)− θ(X)B(FY,Z) + θ(Y )B(FX,Z)

+ {(∇̄Xθ)(Y )− (∇̄Y θ)(X)}u(Z)

= f2{u(Y )ḡ(X, JZ)− u(X)ḡ(Y, JZ) + 2u(Z)ḡ(X,JY )},

Taking the scalar product with N to (5.3) and then, substituting (5.4) and (5.2)
into the left and right terms and using (2.12)4, we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− τ(X)C(Y, PZ) (5.8)

+ τ(Y )C(X,PZ)− ρ(X)D(Y, PZ) + ρ(Y )D(X,PZ)

− θ(X)C(FY, PZ) + θ(Y )C(FX,PZ)

+ {(∇̄Xθ)(Y )− (∇̄Y θ)(X)}v(PZ)

= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}
+ f2{v(Y )ḡ(X, JPZ)− v(X)ḡ(Y, JPZ) + 2v(PZ)ḡ(X, JY )}
+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

Theorem 5.1. Let M be a half lightlike submanifold of an indefinite generalized
Sasakian space form M̄(f1, f2, f3) with a quarter-symmetric metric connection.
Then α, β, f1, f2 and f3 are satisfied β = 0, α is a constant on M and

f1 − f2 = α2, f1 − f3 = α(α+ 1).

Proof. Applying ∇Y to (3.13)1: B(X,U) = C(X,V ) and using (2.1), (2.10)1, 2,
(2.11)1, 2, (3.4), (3.7)1, (3.8), (3.14) and (3.15), we have

(∇XB)(Y,U)

= (∇XC)(Y, V )− 2τ(X)C(Y, V )− λ(X)C(Y,W )− ρ(X)B(Y,W )

− α2 u(Y )η(X)− β2 u(X)η(Y ) + αβ{u(X)v(Y )− u(Y )v(X)}
− g(A∗ξX,F (A

N
Y ))− g(A∗ξY, F (A

N
X)).

Substituting this equation into (5.7) with Z = U and using (3.13)2, 3, we get

(∇XC)(Y, V )− (∇Y C)(X,V )− τ(X)C(Y, V )

+ τ(Y )C(X,V )− ρ(X)D(Y, V ) + ρ(Y )D(X,V )

− θ(X)C(FY, V ) + θ(Y )C(FX, V )

+ (∇̄Xθ)(Y )− (∇̄Y θ)(X)

+ (α2 − β2){u(X)η(Y )− u(Y )η(X)}
+ 2αβ{u(X)v(Y )− u(Y )v(X)}
= f2{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Comparing this equation with (5.8) such that PZ = V , we obtain

{f1 − f2 − α2 + β2}[u(Y )η(X)− u(X)η(Y )]

= 2αβ{u(Y )v(X)− u(X)v(Y )}.
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Taking X = ξ,Y = U and X = V ,Y = U to this equation by turns, we get

f1 − f2 = α2 − β2, αβ = 0.

Applying ∇̄X to η(Y ) = ḡ(Y,N) and using (2.4) and (2.5) we have

(∇Xη)(Y ) = −g(A
N
X, Y ) + τ(X)η(Y ).

Applying ∇Y to (3.8) and using (2.11), (3.6), (3.8), (3.19) and αβ = 0, we have

(∇XC)(Y, ζ) = −(Xα)v(Y ) + (Xβ)η(Y ) + α2θ(Y )η(X) + β2θ(X)η(Y )

+ α{g(A
N
X,FY ) + g(A

N
Y, FX)− v(Y )τ(X)− w(Y )ρ(X)}

− β{g(A
N
X,Y ) + g(A

N
Y,X)− τ(X)η(Y )}.

Substituting this equation and (3.8) into (5.8) such that PZ = ζ, we get

{Xβ + [f1 − f3 − (α2 − β2)− α]θ(X)}η(Y )

− {Y β + [f1 − f3 − (α2 − β2)− α]θ(Y )}η(X)

= {Xα+ βθ(X)}v(Y )− {Y α+ βθ(Y )}v(X).

Taking X = ζ, Y = ξ and X = U , Y = V to this by turns, we obtain

f1 − f3 = (α2 − β2) + α− ζβ, Uα = 0.

Applying ∇Y to (3.7)1 and using (3.6) and (3.18), we have

(∇XB)(Y, ζ) = −(Xα)u(Y )− βB(Y,X)

+ α{u(Y )τ(X) + w(Y )λ(X) +B(X,FY ) +B(Y, FX)}.
Substituting this into (5.7) such that Z = ζ and using (3.7) and (3.10), we get

{Xα+ βθ(X)}u(Y ) = {Y α+ βθ(X)}u(X).

Taking Y = U and using the fact that Uα = 0, we have Xα+ βθ(X) = 0.
Assume that β 6= 0. Then Xα 6= 0 due to Xα = −βθ(X). Applying ∇̄X to

αβ = 0 and using the fact that Xα = −βθ(X), we obtain

αXβ = β2θ(X).

Multiplying β to this result, we get β = 0. It is a contradiction to β 6= 0. Thus
β = 0. Therefore, α is a constant, f1 − f2 = α2 and f1 − f3 = α(α+ 1). �

Definition 5. (1) A screen distribution S(TM) is called totally umbilical [5] in
M if there exists smooth function γ such that A

N
= γP , or equivalently,

C(X,PY ) = γg(X,Y ).

In case γ = 0, we say that S(TM) is totally geodesic in M .

(2) A lightlike submanifold M is called screen conformal [6] if there exists
non-vanishing smooth function ϕ on U such that A

N
= ϕA∗ξ , or equivalently,

C(X,PY ) = ϕB(X,PY ). (5.9)

Theorem 5.2. Let M be a half lightlike submanifold of M̄(f1, f2, f3) with a
quarter-symmetric metric connection. If one of the following four statements
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(1) F is recurrent,
(2) F is Lie recurrent,
(3) S(TM) is totally umbilical,
(4) M is screen conformal,

is satisfied, then M̄(f1, f2, f3) is a flat manifold with an indefinite cosymplectic
structure. In case (1), M is also flat. In case (3), S(TM) is totally geodesic.

Proof. (1) By Theorem 4.1, we get (4.8), (4.10) and the results: α = β = 0 and
λ = ρ = 0. Since α = β = 0, we have f1 = f2 = f3 by Theorem 5.1.

Taking the scalar product with U to (4.8)1, 2, we get

C(X,U) = 0, D(X,U) = 0.

Applying ∇X to C(Y, U) = 0 and using (4.10)1, we obtain

(∇XC)(Y,U) = 0.

Substituting the last equations into (5.8) with PZ = U , we have

(f1 + f2){v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = V and Y = ξ to this result, we obtain f1 + f2 = 0. Therefore, we
see that f1 = f2 = f3 = 0. Thus M̄(f1, f2, f3) is flat.

As f1 = f2 = f3 = 0, (5.6) is reduced to

R(X,Y )Z = B(Y,Z)A
N
X −B(X,Z)A

N
Y

+ D(Y,Z)A
L
X −D(X,Z)A

L
Y.

Using this, (2.10), (2.12), (4.8), (4.9) and the fact that λ = 0, we obtain

R(X,Y )Z = {µ(Y )µ(X)− µ(X)µ(Y )}u(Z)U

+ {σ(Y )σ(X)− σ(X)σ(Y )}w(Z)W = 0,

for all X, Y, Z ∈ Γ(TM). Therefore R = 0 and M is also flat.

(2) By Theorem 4.2 and 5.1, we get α = 0 and β = 0. Thus M̄ is an indefinite
cosymplectic manifold. Since α = 0, we have f1 = f2 = f3 by Theorem 5.1.
Also, since β = 0, by (3) of Theorem 4.2, we see that τ = 0. Taking the scaler
product with N to (5.6) with Z = ξ and then, comparing this result with the
radical component of (5.5) and using (2.9) and (2.12), we have

C(Y,A∗ξX)− C(X,A∗ξY )

= f2{u(Y )v(X)− u(X)v(Y )}+ λ(X)ρ(Y )− λ(Y )ρ(X).

Taking X = U and Y = V to this and using (4.18) and the result (4) in Theorem
4.2, we get f2 = 0. Thus f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat.

(3) Assume that S(TM) is totally umbilical. Then (3.8) is reduced to
γθ(X) = −αv(X) + βη(X). Replacing X by V, ξ and ζ to this equation by
turns, we have α = 0, β = 0 and γ = 0 respectively. Since α = β = 0, M̄ is an
indefinite cosymplectic manifold. As γ = 0, S(TM) is totally geodesic.
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As α = 0, f1 = f2 = f3 by Theorem 5.1. Taking PZ = U to (5.8) with C = 0
and using the facts that D(X,Uk) = C(X,W ) = 0, we get

(f1 + f2){v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = ξ and Y = V to this equation, we get f1 + f2 = 0. Thus f1 = f2 =
f3 = 0 and M̄(f1, f2, f3) is flat.

(4) Replacing Y by ζ to (5.9) and using (3.7)1 and (3.8), we have

αv(X)− βη(X) = αϕu(X).

Taking X = V and X = ξ to this equation by turns, we obtain α = 0 and β = 0
respectively. As α = β = 0, M̄ is an indefinite cosymplectic manifold. Since
α = 0, we have f1 = f2 = f3 by Theorem 5.1.

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB(Y, PZ).

Substituting this equation into (5.8) and using (5.7), we have

{Xϕ− 2ϕτ(X)}B(Y, PZ)− {Y ϕ− 2ϕτ(Y )}B(X,PZ) (5.10)

− {ρ(X) + ϕλ(X)}D(Y, PZ) + {ρ(Y ) + ϕλ(Y )}D(X,PZ)

+ {(∇̄Xθ)(Y )− (∇̄Y θ)(X)}g(ω, PZ)

= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}
+ f2{g(ω, Y )ḡ(X, JPZ)− g(ω,X)ḡ(Y, JPZ) + 2g(ω, PZ)ḡ(X,JY )

+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

where ω = U − ϕV . From (3.13)1 and (5.9); (3.13)2, 3 and (5.9), we get

B(X,ω) = 0, D(X,ω) = 0. (5.11)

Applying ∇̄X to θ(ξ) = 0 and θ(V ) = 0 by turns and using (2.4), (2.8), (2.10),
(3.15) and the fact that α = β = 0, we have

(∇̄Xθ)(ξ) = B(X, ζ) = 0, (∇̄Xθ)(V ) = βu(X) = 0. (5.12)

Replacing PZ by ω to (5.10) and using (5.11), we obtain

− 2ϕ{(∇̄Xθ)(Y )− (∇̄Y θ)(X)}
= (f1 + f2){g(ω, Y )η(X)− g(ω,X)η(Y )} − 4ϕf2ḡ(X,JY )}

Taking X = ξ and Y = V to this equation and using (5.12), we get f1 + f2 = 0.
Therefore, f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat. �
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