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INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A
TRANSVERSAL HALF LIGHTLIKE SUBMANIFOLD

DAE Ho JIN

ABSTRACT. We study the geometry of indefinite trans-Sasakian manifold
M admitting a half lightlike submanifold M such that the structure vector
field of M belongs to the transversal vector bundle of M. We prove several
classification theorems of such an indefinite trans-Sasakian manifold.

1. Introduction

Oubina [14] introduced the notion of a trans-Sasakian manifold, of type
(a, B). Sasakian manifold is an important kind of trans-Sasakian manifold with
a =1 and f = 0. Kenmotsu manifold is another kind of trans-Sasakian man-
ifold such that @ = 8 = 0. Cosymplectic manifold is also an example with
a =0 and 8 = 1. We say that a trans-Sasakian manifold M is an indefinite
trans-Sasakian manifold if M is a semi-Riemannian manifold.

Alegre et al.[1] introduced generalized Sasakian space form M(fy, fa, f3).
Sasakian, Kenmotsu and cosymplectic space forms are important kinds of gen-
eralized Sasakian space forms such that

= fa=fi=5 h=FP a=fi=% fi=f=fs=5%
respectively, where c is a constant J-sectional curvature of each space forms. We
say that a generalized Sasakian space form M (fi, f2, f3) is an indefinite gener-
alized Sasakian space form if M is a semi-Riemannian manifold. The theory of
lightlike submanifolds is an important topic of research in differential geometry
due to its application in mathematical physics, especially in the general rela-
tivity. The study of such notion was initiated by Duggal and Bejancu [2] and
later studied by many authors (see two books [3, 5]).

The class of codimension 2 lightlike submanifolds of semi-Riemannian man-
ifolds is compose of two classes by virtue of the rank of its radical distribution,
which are called half lightlike submanifold or coisotropic submanifold [3]. Half
lightlike submanifold is a particular case of r-lightlike submanifold [2] such that
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r = 1 and its geometry is more general form than that of coisotrophic submani-
folds or lightlike hypersurfaces. Much of the works on half lightlike submanifolds
will be immediately generalized in a formal way to arbitrary r-lightlike subman-
ifolds. For this reason, we study only half lightlike submanifolds.

The author studied half lightlike submanifolds M of indefinite Sasakian man-
ifolds M [6] or indefinite cosymplectic manifolds M [11] subject such that the
structure vector field of M belongs to the transversal vector bundle of M, such
a M is called a transversal half lightlike submanifold. In this paper, we study
the geometry of indefinite trans-Sasakian manifold M admitting a transversal
half lightlike submanifold M. The main result is to prove several classification
theorems of such an indefinite trans-Sasakian manifold.

2. Half lightlike submanifold

A codimension 2 lightlike submanifold (M, g) of a semi-Riemannian mani-
fold (M, g) is called a half lightlike submanifold of M if the rank of its radical
distribution Rad(TM) = TM NTM+* is 1. In this case, Rad(TM) is a vec-
tor subbundle of the tangent bundle TM and the normal bundle TM* of M,
of rank 1. Therefore, there exist complementary non-degenerate distributions
S(TM) and S(TM*) of Rad(TM) in TM and TM~ respectively, which are
called the screen distribution and co-screen distribution on M, such that

TM = Rad(TM) @oren, S(TM), TM™* = Rad(TM) @orer, S(TM),  (2.1)

where @+, denotes the orthogonal direct sum. Denote by F(M) the algebra
of smooth functions on M and by I'(E) the F'(M) module of smooth sections of
any vector bundle E over M. Also denote by (2.1); the i-th equation of (2.1).
We use same notations for any others. Consider the orthogonal complementary
distribution S(TM)+ to S(TM) in TM. Certainly, TM* is a vector subbun-
dle of S(TM)*. As S(TM+*) is a non-degenerate subbundle of S(T M), the
orthogonal complementary distribution S(TM*)L of S(TM*) in S(TM)* is
also a non-degenerate vector bundle such that

S(TM)* = S(TM*Y) @ o, S(TM&)*.

Clearly, Rad(TM) is a subbundle of S(TM+)L. Choose L € T'(S(TM1)) as a
unit spacelike vector field, without loss of generality. It is well known [3] that,
for any null section £ of Rad(T'M) on a coordinate neighborhood U C M, there
exists a uniquely defined null vector field N € T'(S(TM*)1) satisfying

g(¢&,N)=1, g(N,N)=g(N,X)=g(N,L) =0, VX e T(S(TM)).

Denote by ltr(TM) the subbundle of S(T'M~)* locally spanned by N. Then
we show that S(TM+)t = Rad(TM)®ltr(TM). Let tr(TM) = S(TM=*) @ orin
ltr(TM). We call N, ltr(TM) and tr(TM) the lightlike transversal vector field,
lightlike transversal vector bundle and transversal vector bundle of M with re-
spect to the screen distribution S(T'M), respectively. Then the tangent bundle
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TM of M is decomposed as
TM = TM @ tr(TM) = {Rad(TM) @ tr(TM)} ®orin S(TM) (2.2)
= {Rad(TM) & ltr(TM)} @orin S(TM) @oper, S(TM™*).
In the sequel, let X, Y and Z be the vector fields on M, unless otherwise
specified. Let V be the Levi-Civita connection of M and P the projection

morphism of TM on S(T M) with respect to the decomposition (2.1). Then the
local Gauss and Weingarten formulas of M and S(T'M) are given by

VxY = VxY +B(X,Y)N + D(X,Y)L, (2.3)
VxN = —A, X +7(X)N + p(X)L, (2.4)
VxL = —A, X+ ¢(X)N; (2.5)
VxPY = V%PY + C(X,PY)¢, (2.6)
Vxé = —AfX —1(X)C, (2.7)

where V and V* are induced connections on TM and S(TM), respectively,
B and D are called the local second fundamental forms of M, C is called
the local second fundamental form on S(TM). Ay, Af and A, are called the
shape operators, and 7, p and ¢ are 1-forms on TM. We say that h(X,Y) =
B(X,Y)N + D(X,Y)L is the second fundamental form tensor of M.

Since the connection V on M is torsion-free, the induced connection V on M
is also torsion-free, and B and D are symmetric. The above three local second
fundamental forms of M and S(T'M) are related to their shape operators by

B(X,Y) = g(A{X,Y), GAIX,N) =0, (2.8)
C(X,PY)=g(A, X, PY), g(A,X,N) =0, (2.9)
D(X,Y)=g(A, X,Y) = d(X)n(Y), g(A,X,N)=p(X), (2.10)

where 7 is a 1-form on T'M such that n(X) = g(X, N). From (2.8), (2.9) and
(2.10), we see that B and D satisfy

B(X, §) =0, D(X, §) = —¢(X), (2.11)
Af and A are S(T'M)-valued, and A; is self-adjoint on 7'M such that
AzE=0. (2.12)

The induced connection V of Mis not a metric one, and satisfies
(Vxg)(Y, Z) = B(X,Y)n(Z) + B(X, Z)n(Y). (2.13)
But the connection V* on S(T'M) is a metric one.

Definition 1. A half lightlike submanifold M of a semi-Riemannian manifold
M is called totally geodesic[3] if h = 0 on any coordinate neighborhood .

Remark 1. Tt is easy to see that M is totally geodesic if and only if the local
second fundamental forms B and D of M satisfy B =0 and D = 0.
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_ Denote by R, R and R* the curvature tensors of the Lavi-Civita connection
V on M and the induced connections V and V* on M and S(T'M) respectively.

Definition 2. A lightlike submanifold M = (M, g,V) equipped with a de-
generate metric g and a linear connection V is said to be a space of constant
curvature c if there exists a constant ¢ such that R satisfies

R(X,YV)Z = c{g(Y, 2)X — g(X, Z)Y}. (2.14)

3. Indefinite trans-Sasakian manifolds

An odd-dimensional semi-Riemannian manifold (M, g) is said to be an in-
definite almost contact metric manifold ([6]~[13]) if there exist a structure set
{J, ¢, 0, g}, where J is a (1, 1)-type tensor field, ¢ is a vector field which is
called the structure vector field of M and @ is a 1-form such that

J2X ==X +0(X)¢, g(JX, JY) =g(X,Y) —ed(X)0(Y), 6(C) =1, (3.1)

for any vector fields X and Y on M, where ¢ = 1 or —1 according as ( is
spacelike or timelike respectively. In this case, the structure set {J,¢, 0,3} is
called an indefinite almost contact metric structure of M.

Definition 3. An indefinite almost contact metric manifold (M, g), with the
Levi-Civita connection V with respect to g, is called an indefinite trans-Sasakian
manifold if there exist two smooth functions o and 8 on M such that

(Vx )Y = a{g(X,Y)¢ — ef(Y)X} + B{g(JX, V)¢ —ef(Y)J X}, (3.2)

for any vector fields X and Y on M. In this case, we say that {.J,(,0, g} is an
indefinite trans-Sasakian structure of type (o, B8) [1, 12, 14].

By replacing Y by ¢ in (3.2) and using (3.1), we get
Vx(=—ecaX +eB(X —0(X)Q). (3.3)

Remark 2. If 3 = 0, then M is said to be an indefinite a-Sasakian manifold.
Indefinite Sasakian manifolds [6, 7, 11] appear as examples of indefinite -
Sasakian manifolds, with @ = 1. Another important kind of indefinite trans-
Sasakian manifold is that of indefinite cosymplectic manifolds [8, 13] obtained
for a = = 0. If @ = 0, then M is said to be an indefinite B3-Kenmotsu
manifold. Indefinite Kenmotsu manifolds [9, 10] are particular examples of
indefinite S-Kenmotsu manifold, with 8 = 1.

It is known [7, 8] that, for any half lightlike submanifold M of an indefinite
almost contact metric manifold M, J(Rad(TM)), J(Itr(TM)) and J(S(TM=))
are subbundles of S(T'M), of rank 1. In the sequel, we shall assume that ¢ is a
unit spacelike vector field, i.e., e = 1, without loss of generality.

Definition 4. A half lightlike submanifold M of an indefinite almost contact
metric manifold M is called a transversal half lightlike submanifold [6, 11] if ¢
belongs to the transversal vector bundle tr(TM) = S(TM™) @y, ltr(TM).
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In case M is a transversal half lightlike submanifold, the structure vector
field ¢ is decomposed as ( = eL +bN, where e and b are smooth functions given
by e = 0(L) and b = 0(¢). As g(¢,¢) = 1, we have €2 = 1. Thus, we may choose
e = 1, without loss of generality. Therefore, we have

¢=L+bN. (3.4)

Theorem 3.1. Any indefinite trans-Sasakian manifold M, of type (o, B), ad-
mitting a transversal half lightlike submanifold M such that b = 0 satisfiesa =0
and ¢ = 0. Thus M is never indefinite Sasakian manifold. Moreover, if D = 0,
then M is an indefinite cosymplectic manifold.

Proof. As b=0, we get ( = L by (3.4). Using (2.5) and (3.3), we obtain
—aJX +B(X —0(X)()=—-A, X +o(X)N.
Taking the scalar product with £ and JN to this by turns, we have
ag(X, J§) = ¢(X),  an(X) - Byg(X,JN) = D(X,JN), (3.5)
respectively. From these equations and (2.11)2, we get
a=an(§) — By, JN) = D&, JN) = =¢(JN) = —ag(JN, J§) = —a.

Thus o = 0. As a =0, we get ¢ =0 by (3.5).
Moreover, if D = 0, then we have 3g(X, JN) = 0 for all X € I'(T'M). Thus
B = 0. Therefore, M is an indefinite cosymplectic manifold. O

In the sequel, by saying that transversal half lightlike submanifolds we shall
mean half lightlike submanifolds satisfying (3.4) such that b # 0.

Theorem 3.2. Any indefinite trans-Sasakian manifold M admitting a transver-
sal half lightlike submanifold M satisfies « = 1. Therefore M is neither indefi-
nite B-Kenmotsu manifold nor indefinite cosymplectic manifold.

Proof. Applying J to (3.4) and using J¢ = 0, we have JL = —bJN. Thus we
see that J(itr(TM)) = J(S(TM™1Y)). If J(Rad(TM))NJ(ltr(TM)) # {0}, then
there exists a non-vanishing smooth function f such that J§¢ = fJN. Then we
have —b? = g(J¢&, JE) = f2g(JN,JN) = 0, i.e., b = 0. It is a contradiction
to b # 0. Thus J(Rad(TM)) N J(ltr(TM)) = {0}. Therefore, there exists a
non-degenerate almost complex distribution H with respect to J such that

TM = Rad(TM) @open {J(Rad(TM)) @oper, J(Utr(TM)) Goren HY.

Consider the mutually orthonormal local timelike and spacelike vector fields V'
and U on S(T'M) respectively, and their 1-forms v and u defined by

V =—-b"1Jg, U=-b""{JE+D?IN}, (3.6)

v(X)=—g(X,V), u(X) =g(X,U). (3.7)
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As Span{J¢, JN} = Span{V, U}, we show that {V,U} is an orthonormal
frame field of J(Rad(TM)) & J(Itr(TM)) and J(Rad(TM)) & J(itr(TM)) =
J(Rad(TM)) @orth, Span{U}. Thus TM is decomposed as follow:

TM = Rad(TM) ®ortn, {J(Rad(TM)) ®ortn, Span{U} Soren, H} (3.8)

Denote by S the projection morphism of TM on H with respect to the
decomposition (3.8). Using (3.8), any vector field X on M is expressed as

X =SX+vX)V+uX)U+n(X)E. (3.9)
Using (3.6) and (3.9), the action JX of X by J is expressed as
JX =FX —bn(X)V +b 'w(X)¢ —bw(X)N —w(X)L, (3.10)

where F' is a tensor field on TM of type (1,1) defined by
FX =JSX, and w(X)=u(X)+v(X).
Applying J to (3.10) and using (3.1), (3.4), (3.6), and (3.9), we have
F?X = X +0(X)V +u(X)U + n(X)¢ = —SX. (3.11)
Applying Vx to (3.4) and using (2.4), (2.5), (3.3), (3.9) and (3.10), we have
A, X +bA X =aFX — BSX — {af(X) + Bu(X)}V  (3.12)
— Bu(X)U + b~ Haw(X) - BO(X)}¢,

X[b] +b7(X) + ¢(X) = b{av(X) — pO(X)}. (3.13)
Taking the scalar product with V' to (3.12), we have
D(X,V)+bC(X,V) = ab(X) + pv(X). (3.14)

Replacing X by £ to (3.14) and using (2.11)5, we have bC(£, V) = ba + (V).
From the facts that n(Y) = (Y, N) and 8(Y) = bn(Y), we obtain

2dn(X,Y) =9(X,AY) —g(A, X, V) + 7(X)n(Y) — 7(Y)n(X), (3.15)
2d0(X,Y) =2bdn(X,Y) + X[b]n(Y) — Y[b]n(X).
Using these equations, (3.13) and the fact that d6(X,Y) = §(X, JY), we get
2(X,JY) =b{g(X,A,Y)—g(A,X,Y)}
+ {baw(X) = bB0(X) — (X)) }n(Y)
— {bav(Y) = bB0(Y) — o(Y) }n(X).
Taking X =V and Y = £ to this equation and using the fact that bg(A £, V) =
bC(&,V) =ba+ ¢(V), we obtain a = 1. O
Applying Vx to bV = —J¢ for all X € T'(TM) and using (2.3), (2.6), (2.7),
(2.11), (3.2), (3.4), (3.6), (3.9), (3.10) and (3.13), we get
V’O(X,V) = B(X,U - V) + b{ad(X) + Bw(X)}, (3.16)
bD(X,V)=B(X,V -U) — bpu(X), (3.17)
ViV =aSX + BFX + b7 F(A{X) + {au(X) + b~ '¢(X)}U.  (3.18)
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Theorem 3.3. Any indefinite trans-Sasakian manifold M, of type (o, B), ad-
mitting a totally geodesic transversal half lightlike submanifold M satisfies a =1
and 8 = 0. Therefore, M is an indefinite Sasakian manifold.

Proof. Assume that M is totally geodesic, i.e., B =D = 0. Using (3.17) and
the fact that b # 0, we have Su(X) = 0 for all X € T'(TM). Taking X =U
to this result, we get § = 0. Therefore, from this result and Theorem 3.3, we
obtain &« =1 and = 0. Thus we have our theorem. O

Definition 5. We say that M is locally symmetric [6, 7, 9] if its curvature
tensor R be parallel, i.e., have vanishing covariant differential, VR = 0.

Theorem 3.4. Let M be a totally geodesic transversal half lightlike submanifold
of an indefinite trans-Sasakian manifold M. If M is locally symmetric, then M
s a space of constant positive curvature 1.

Proof. As M is totally geodesic, i.e., B = D = 0, we show that A7 = 0 by (2.8),
and ¢ = 0 by (2.11)3. Asa =1 and § =0, (3.18) is reduced to

ViV = SX + u(X)U.

From (3.14) and the fact that 8(X) = bn(X), we get C(X,V) = n(X). Thus,
from (2.6) with PY =V and (3.9), we obtain

VxV =X —-v(X)V. (3.19)
Applying Vy to (3.19) and using (3.19), we have
VxVyV =VxY —v(Y)X — {X(v(Y)) —v(X)v(Y)}V.
From the last two equation, we obtain
R(X,Y)V =v(X)Y —v(Y)X — 2dv(X,Y)V.

As M is totally geodesic, R(X,Y)V = R(X,Y)V. From this result and the fact

that §(R(X,Y)V, V) = 0, we obtain do = 0. Thus
R(X,Y)V = v(X)Y —o(Y)X. (3.20)
Applying Vx to v(Y) = —g(Y, V) and using (3.7) and (3.19), we have
(Vxo)(V) = (X, ¥) — o(X)o(Y). (3:21)

Applying Vz to (3.20) and using (3.19) ~ (3.21) and the fact that M is locally
symmetric, i.e., VzR =0 for any Z € I'(T'M), we have

R(X,Y)Z =g(Y,2)X — g(X, Z)Y.

Due to (2.14), we show that M is a space of constant positive curvature 1. 0O
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4. Indefinite generalized Sasakian space form

Definition 6. An indefinite almost contact metric manifold Jq is called an
indefinite generalized Sasakian space form [1] and denote it by M(f1, fa, f3) if
there exist three smooth functions f1, fo and f3 on M such that

R(X,Y)Z = fi{g(Y,2)X — g(X,2)Y'} (4.1)
+ f{G(X,JZ)JY —g(Y,JZ)JX +25§(X,JY)JZ}
+ f3{0(X)0(2)Y — 0(Y)0(Z)X
+9(X, 2)0(Y)¢ — g(Y, 2)0(X)(},
for any vector fields X, Y and Z on M.

Example 1. An indefinite Sasakian space form, i.e., an indefinite Sasakian
manifold with constant J-sectional curvature c, such that the structure vector
field ¢ is spacelike, is an indefinite generalized Sasakian space form with

fi =<2, fo=f3 =521

Example 2. An indefinite Kenmotsu space form, i.e., an indefinite Kenmotsu
manifold with constant J-sectional curvature c, such that the structure vector
field ¢ is spacelike, is an indefinite generalized Sasakian space form with

f=2, fo=fz =1

Example 3. An indefinite cosymplectic space form, i.e., an indefinite cosym-
plectic manifold with constant J-sectional curvature c, such that the structure
vector field  is spacelike, is an indefinite generalized Sasakian space form with

fi=fo=f3=7%

We need the following three Gauss-Codazzi equations for M and S(TM) (for
a full set of these equations see [3]): For all X, Y, Z € I'(T' M),

J(R(X,Y)Z,§) = (VxB)(Y,Z) — (VyB)(X, Z) (4.2)
+B(Y,Z)r(X) — B(X, Z)7(Y)
+D(Y, Z)$(X) — D(X, Z)¢(Y),
g(R(X,Y)Z,N) = g(R(X,Y)Z,N) (4.3)
+D(X, Z)p(Y) — D(Y, Z)p(X),
g(R(X,Y)PZ N)= (VxC)(Y,PZ)— (VyC)(X,PZ) (4.4)
+C(X,P2)r(Y)-C(Y,PZ)r(X).
Theorem 4.1. Any indefinite generalized Sasakian space form M(fy, f2, f3),

equipped with indefinite trans-Sasakian sutucture of type («, ), admitting a
totally geodesic transversal half lightlike submanifold M satisfies

04217 BZO, f1:1 and f2:f3:0.
Thus, M(f1, fa, f3) is an indefinite Sasakian manifold of constant curvature 1.
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Proof. As M is totally geodesic, we get B = D = ¢ = A7 =0 and g(A,X)Y) =
Oforall X, Y € I'(TM). By Theorem 3.3 and Theorem 3.4, we show that o = 1
and 8 = 0. Substituting (4.1) into (4.2), we obtain

ba{0(X)g(Y, TZ) — v(Y)g(X, TZ) — 20(Z)g(X, JY )}
+ bfs{g(X, 2)8(Y) — g(Y, 2)8(X)} = 0.

Taking X = Z =U and Y = £ and using the fact that b = 0, we have f3 = 0.
Also, taking X = Z =V and Y = ¢ and using (3.6) and (3.7), we get fo = 0.
From (2.14) and (3.14) and the facts that a = 1 and 8 = 0, we have

CX,V)=n(X), VxV=X-uX)V. (4.5)
Substituting (4.1) and (4.4) into (4.3) and using fo = f3 = 0, we have
J{g(Y, PZ)n(X) — g(X, PZ)n(Y)}
= (VxC)Y,PZ)— (VyC)(X,PZ)+ C(X,PZ)r(Y) - C(Y,PZ)T(X).
Replacing PZ by V to the last equation and using (4.5);, we have
S{o(Xn(Y) —o(Y)n(X)} (4.6)
= (VxO)Y, V) = (Vy O)(X, V) + n(X)7(Y) = n(Y)7(X).
Applying Vx to C(Y,V) = n(Y) and using (4.5)2, we have
(VxCO)(Y, V) =X(n(Y)) = n(VxY) — g(A, Y, X) + v(X)n(Y).
Substituting this equation into (4.6) and using (3.15), we get
(fi = D{o(X)n(Y) = v(Y)n(X)} = 0.

Taking X = V and Y = ¢ to this, we have f; = 1. Thus M(fi, f2, f3) is an
indefinite Sasakian manifold of constant curvature 1. O

Definition 7. A half lightlike submanifold M of a semi-Riemannian manifold
M is called screen totally geodesic [3] if A, X = 0, or equivalently, C = 0.

Theorem 4.2. There exists no indefinite generalized Sasakian space forms
M(f1, f2, f3), equipped with indefinite trans-Sasakian sutucture of type («, ),
admitting a screen totally geodesic transversal half lightlike submanifold M.

Proof. As A, =C =0 and o =1, from (3.12) and (3.14), we show that

DX, U)=—Bu(X),  D(X,V)=0(X)+fu(X).  (47)
Taking the scalar product with N to (3.12) and using (2.10)2, we have
bp(X) = w(X) — BO(X). (4.8)

Substituting (4.1) and (4.4) into (4.3) with Z = PZ and using the facts that
V —U =bJN and §(X) = bn(X), we have
gy, PZ)n(X) —g(X, PZ)n(Y)} (4.9)
+ b7 o {g(X, JPZ)w(Y) — §(V, JPZ)w(X) + 25(X, JY)w(PZ)}
= D(X,PZ)p(Y) — D(Y,PZ)p(X).
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Replacing PZ by U and using (4.7); and the fact that JU = b~1¢ — L, we get
Fifu¥)n(X) —u(X)n(Y)} + 207" fog(X, JY) (4.10)
= B{u(Y)p(X) — u(X)p(Y)}.

Taking X =V and Y = £ to this and using (3.6)1, we have fo = 0. Also, taking

X =U and Y = £ to (4.10) with fo = 0, we obtain f; = 8p(§). Replacing X

by € to (4.8), we get p(¢) = —3. Thus we have f; = —32%. Replacing PZ by V

to (4.9) and using the facts that f; = —32 and fo = 0, we have

BHo(Y)n(X) —v(X)n(Y)} = D(X,V)p(Y) — D(Y,V)p(X).

Taking X =V and Y = £ to this equation and using (4.7)2 and (4.8), we have
B2 = B2 + 1. It is a contradiction. Thus we have our theorem. O
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