DOI QR코드

DOI QR Code

Robust Vehicle Lateral Stability Controller Against Road Bank Angles

도로 횡경사 변화에 견실한 차량 횡안정성 제어기 설계

  • Na, Ho Yong (School of Mechanical Engineering, Korea University of Technology and Education) ;
  • Cho, KunHee (School of Mechanical Engineering, Korea University of Technology and Education) ;
  • You, Seung-Han (School of Mechanical Engineering, Korea University of Technology and Education)
  • 나호용 (한국기술교육대학교 기계공학부) ;
  • 조건희 (한국기술교육대학교 기계공학부) ;
  • 유승한 (한국기술교육대학교 기계공학부)
  • Received : 2016.12.30
  • Accepted : 2017.07.06
  • Published : 2017.10.01

Abstract

In this paper, a differential-braking-based yaw moment control system was developed to guarantee robust performance against road bank angle. A new target yaw rate model was established by combining the signal from a lateral acceleration sensor and 2-DOF single track model. In addition, a disturbance observer was utilized to take into account parameter uncertainties in yaw dynamics and to improve robust performance of the controller. CARSIM, which is a multi-DOF vehicle dynamic simulation tool, was used to verify the performance of the proposed controller in various driving scenarios. The simulation results indicate that the stability of the vehicle was robustly maintained by the controller, which is characterized by the reflection of the signal of a lateral acceleration sensor signal and by the compensation of the errors in the model parameters via the disturbance observer.

본 연구에서는 횡가속도 센서 계측 신호 기반의 기준 차량 요레이트 모델을 활용하여 횡경사 유무에 관계 없이 견실한 성능을 보장하는 제동기반 요 모멘트 제어시스템을 개발하였다. 2자유도 single track 모델과 횡가속도 센서 계측 신호를 융합하여 새로운 기준 요레이트 모델을 설계하였고 이를 기반으로 요 모멘트 제어기를 설계하였다. 또한 외란 관측기를 적용하여 요레이트 동역학에 존재하는 차량 파라미터 오차를 보상하고 제어기의 성능을 개선하였다. 다자유도 차량동역학 해석 SW인 CARSIM을 이용하여 평지 및 횡경사 노면을 반영한 다양한 검증 시나리오 조건에서 제안된 제어기를 검증하였다. 그 결과 기준 차량모델에 횡가속도 계측 신호를 반영하고 외란 관측기를 통해 모델 파라미터 오차를 보상하는 것을 특징으로 하는 새롭게 제안된 횡안정성 제어기가 도로 횡경사에 관계없이 다양한 주행상황에서 차량의 횡안정성을 견실하게 유지할 수 있음을 확인하였다.

Keywords

References

  1. Lie, A., Tingvall, C., Krafft, M. and Kullgren, A., 2006, "The Effectiveness of Electronic Stability Control (ESC) in Reducing Real Life Crashes and Injuries," Traffic injury prevention, Vol. 7, No. 1, pp. 38-43. https://doi.org/10.1080/15389580500346838
  2. Erke, A., 2006, "Potential Effects of Electronic Stability Control (ESC) on Accidents," European Transport Conference (ETC).
  3. Rajamani, R. and Piyabongkarn, D. N., 2013, "New Paradigms for the Integration of Yaw Stability and Rollover Prevention Functions in Vehicle Stability Control," IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 1, pp. 249-261. https://doi.org/10.1109/TITS.2012.2215856
  4. HYUNDAI Motor America, 2015, "2016 Hyundai Tucson: Owner's Manual"
  5. You, S.H., Hahn, J.O. and Lee, H., 2009, "New Adaptive Approaches to Real-time Estimation of Vehicle Sideslip Angle," Control Engineering Practice, Vol. 17, No. 12, pp. 1367-1379. https://doi.org/10.1016/j.conengprac.2009.07.002
  6. Hahn, J.O., Yi, K., Kang, S. and Lee, K.I., 2002, "Robust Vehicle Stability Control Using Disturbance Observer." Trans. Korean Soc. Mech. Eng. A, Vol. 26, No. 12, pp.2519-2526. https://doi.org/10.3795/KSME-A.2002.26.12.2519
  7. Hahn, J.O., Rajamani, R., You, S.H. and Lee, K.I., 2004, "Real-time Identification of Road Bank Angle using Differential GPS," IEEE Trans. Control Systems Technology, Vol. 12, No. 4, pp. 589-599. https://doi.org/10.1109/TCST.2004.825131
  8. You, S. H., Jo, J. S., Yoo, S., Hahn, J. O. and Lee, K. I., 2006, "Vehicle Lateral Stability Management using Gain-scheduled Robust Control," Journal of mechanical science and technology, Vol. 20, No. 11, pp. 1898-1913. https://doi.org/10.1007/BF03027583
  9. You, S.H., 2006, "Modeling, Estimation and Control of a Vehicle Stability Management System," Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Seoul National University.