DOI QR코드

DOI QR Code

전립선암 치료 시 방광의 용적 변화에 따른 선량의 비교 평가

Comparison of Doses According to Change of Bladder Volume in Treatment of Prostate Cancer

  • Kwon, Kyung-Tae (Department of Radiologic Technology, Dongnam Health University) ;
  • Min, Jung-Whan (Department of Radiological Technology, Shingu University)
  • 투고 : 2017.08.28
  • 심사 : 2017.09.20
  • 발행 : 2017.09.30

초록

전립선암에서 방사선치료의 경우 직장의 선량을 감소시키기 위하여 항문을 통하여 일정한 양의 공기를 주입한 풍선을 이용한다. 이런 이유로 전립선암의 방사선치료는 매일 영상유도를 하기 위하여 CBCT를 획득하고 있다. 치료 전 처음 촬영한 전산화단층촬영과 가장 비슷한 상태의 해부학적 구조를 유지시키기 위하여 전처치를 하고 있지만 완벽하게 일치된다고 할 수 없다. 두 명의 실제 치료계획에서는 방광의 용적은 45.82 cc와 63.43 cc 및 등가직경 4.4 cm, 4.9 cm로 측정되었다. 본 연구의 20회 CBCT 결과에서 방광의 용적은 평균 56.2 cc, 105.6cc로 평가되었다. 치료계획 전산화단층촬영에서 평가된 선량과 A 환자의 기준으로 정한 CBCT의 선량은 PTV Mean dose는 1.74%, Bladder Mean dose는 96.67%의 차이로 평가되었으며, B 환자의 경우 PTV Mean dose는 4.31%, Bladder Mean dose는 97.35%의 차이로 평가되었다. 방광의 용적의 변화에 따라 PTV와 방광의 선량변화가 발생된다는 것을 알 수 있었다. 방광의 용적의 변화에 따른 방광 선량의 상관계수 값은 평균선량 $R^2=-0.94$의 선형성을 나타냈다. 방광의 용적변화에 따른 PTV선량의 상관계수 값은 평균선량 $R^2=0.04$의 선형성을 나타냈다. 방광 용적의 변화에 따라 PTV의 선량 변화가 방광의 선량변화보다 더 크다는 것을 알 수 있었다.

In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose $R^2=-0.94$. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose $R^2=0.04$. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

키워드

참고문헌

  1. Kyu-Won Jung, Young-Joo Won, Hyun-Joo Kong, et al.: Cancer Statistics in Korea Incidence, Mortality, Survival, and Prevalence in 2012 Cancer Research and Treatment. Official Journal of Korean Cancer Association, 47(2), pp. 127-141, 2015. https://doi.org/10.4143/crt.2015.060
  2. Michael J. Zelefsky, Zvi Fuks, Laura Happersett, Henry J. Leea, et al.: Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiotherapy and Oncology, (55), pp. 241-249, 2000.
  3. Michael J Zelefsky, Zvi Fuks, Margie Hunt, et al.: High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. International Journal of Radiation Oncology Biology Physics, 53, pp. 1111-1116, 2002. https://doi.org/10.1016/S0360-3016(02)02857-2
  4. A. Pollack, G.K. Zagars: External beam radiotherapy dose response of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys, (39), pp. 1011-1018, 1997.
  5. C.E. Hanks, A.L. Hanlon, T.E. Schultheiss, et al.: Dose escalation with 3D conformal treatment: Five year outcomes, treatment optimization, and future directions. Int. J. Radiat. Oncol. Biol. Phys, (41), pp. 501-510, 1998.
  6. M.J. Zelefsky, S.A. Leibel, P.B. Gaudin, et al.: Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys, (41), pp. 491-500, 1998.
  7. Teh BS, Dong L, McGary JE, et al.: Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer. Med Dosim, 30(1)1, pp. 25-30, 2005. https://doi.org/10.1016/j.meddos.2004.10.005
  8. Wachter S, Gerstner N, Dorner D, et al.: The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 52(1), pp. 91-100, 2002. https://doi.org/10.1016/S0360-3016(01)01821-1
  9. Yong Yang, Eduard Schreibmann, Tianfang Li, Chuang Wang and Lei Xing : Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Physics in Medicine & Biology, Volume 52, Number 3.
  10. Anne RichterEmail author, Qiaoqiao Hu, Doreen Steglich, et al.: Investigation of the usability of conebeam CT data sets for dose calculation, Radiation Oncology, 3:42, 2008. DOI: 10.1186/1748-717X-3-42(C) Richter et al; licensee BioMed Central Ltd. 2008
  11. Chen S, Le Q, Mutaf Y, et al. J Appl Clin Med Phys, Jul 13. doi: 10.1002/acm2.12127, 2017 [Epub ahead of print], Feasibility of CBCT-based dose with a patient-specific stepwise HU-to-density curve to determine time of replanning.
  12. Pearson D, Gill SK, Campbell N, Reddy K. J Appl Clin Med Phys, Nov;17(6):107-117, doi: 10.1120/jacmp.v17i6.6207, Dosimetric and volumetric changes in the rectum and bladder in patients receiving CBCT-guided prostate IMRT: analysis based on daily CBCT dose calculation, 2016.
  13. Yohannes I, Prasetio H, Kallis K, Bert C. J Appl Clin Med Phys. Jul;17(4):106-113. doi: 10.1120/jacmp.v17i4.6194, Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study, 2016
  14. Dunlop A, McQuaid D, Nill S, et al. Strahlenther Onkol, Dec;191(12):970-8, doi: 10.1007/s00066-015-0890-7, Epub Sep 24, Comparison of CT number calibration techniques for CBCT-based dose calculation, 2015.